-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_x0_md_multi.r
116 lines (97 loc) · 5.78 KB
/
get_x0_md_multi.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
##jmd
##2.22.12
##get_x0_md_multi.r
##get beta that optimizes probabilities and given growth conditions
#need to add other conds in obj or lb
#decision vars are [v1 v2 ... accum_v deplete_v accum.slack deplete.slack beta], where v1 & v2 are for metab.dilution constraints
#amat=[S 0 0 0 0; 0 S_intra 0 -delta*|S_intra|; 0 0 S_intra delta*|S_intra|; I 0 0 -diag(ub); 0 I 0 -diag(md.ub); 0 0 I -diag(md.ub)]
#'goals' are treated as requirements here, inconsistent w/ FBA()
#f.ub.mat has rows per flux and columns per condition
#bm.ub st if bm_flux is a rewarded goal, it won't try to stretch unrealistically high
get.x0.md.multi <- function(sp, obj.coeffs, goal.coeff=10**3, check.input=TRUE, se='E', ctrl=list(tilim=120), coeff.mets=10**-3, biomass='biomass',
nondilute.regexp='^(PROTON|WATER|OH|OXYGEN-MOLECULE|CARBON-DIOXIDE)(\\[CCO-|$)|\\[CCO-EXTRACELLULAR\\]$', known.rxns=biomass,
md=TRUE, connect.constr.mat=NULL, mipstart=NULL, f.ub.mat=array(10**3, dim=ncol(sp), dimnames=list(colnames(sp))), md.f.ub=array(10**3, dim=ncol(sp), dimnames=list(colnames(sp))),
bm.ub=0.4, req.conds=ncol(as.matrix(f.ub.mat)), lb.req=0.1, goal.conds=setdiff(ncol(f.ub.mat), req.conds) ){
f.ub.mat <- as.matrix(f.ub.mat)
#make 3col amat
sp.3c <- dense2sp(sp)
#get scalars
nconds <- ncol(f.ub.mat)
nrxns <- ncol(sp)
nmets <- nrow(sp)
if (check.input){
stopifnot(!is.na(obj.coeffs), all(!is.na(sp)), !is.na(f.ub.mat), is.finite(f.ub.mat), nrow(as.matrix(f.ub.mat))==ncol(sp),
is.null(names(se))|all(names(se)==rownames(sp)), is.null(names(obj.coeffs))|all(names(obj.coeffs)==colnames(sp)),
is.null(names(coeff.mets))|all(names(coeff.mets)==rownames(sp)), is.null(connect.constr.mat)|sum(duplicated(rownames(connect.constr.mat)))==0
)
cat('Done input validity checks.\n')
}
amat.3c <- NULL
##for each condition, rbind an S matrix for Sv=0, & an identity matrix and -Diagonal(f.ub.mat[,i]) matrix for v<=f.ub*beta
for (cond.ind in 1:nconds){
amat.3c <- rbind(amat.3c,
data.frame(rxn=paste('cond', cond.ind, '_', sp.3c$rxn, sep=''), cpd=paste('cond', cond.ind, '_', sp.3c$cpd, sep=''), coeff=sp.3c$coeff),
data.frame(rxn=paste('cond', cond.ind, '_', colnames(sp), sep=''), cpd=paste('cond', cond.ind, '_', colnames(sp), sep=''), coeff=1),
data.frame(rxn=paste('beta_', colnames(sp), sep=''), cpd=paste('cond', cond.ind, '_', colnames(sp), sep=''), coeff=-f.ub.mat[,cond.ind])
)
}
#name cols and rows of Sv=0 and v<=ub*beta (these rows have same name as cols)
cnames <- paste(rep(paste('cond', 1:nconds, '_', sep=''), each=nrxns), rep(colnames(sp), times=nconds), sep='')
rnames <- c(paste(rep(paste('cond', 1:nconds, '_', sep=''), each=nmets), rep(rownames(sp), times=nconds), sep=''), cnames)
##md constraints
if (md){
mets.intra <- grep(nondilute.regexp, rownames(sp)); nmets.intra <- length(mets.intra)
md.res <- run.get.md.constraints.3c(sp=sp, mets.intra=mets.intra, md.f.ub=md.f.ub)
amat.3c <- rbind(amat.3c, md.res$amat)
cnames <- c(cnames, md.res$cnames)
rnames <- c(rnames, md.res$rnames)
obj <- c(numeric((2+nconds)*nrxns), rep(-10**3, 2*nmets.intra), obj.coeffs)
ub <- c(as.numeric(f.ub.mat), md.f.ub, md.f.ub, rep(1000, 2*nmets.intra), rep(1, nrxns))
} else {
obj <- c(numeric(nconds*nrxns), obj.coeffs)
ub <- c(as.numeric(f.ub.mat), rep(1, nrxns))
}
##connect.constr.mat
if (!is.null(connect.constr.mat)){
ccm.3c <- dense2sp(connect.constr.mat)
amat.3c <- rbind(amat.3c, data.frame(rxn=paste('beta_', ccm.3c$rxn, sep=''), cpd=paste('ccm_', ccm.3c$cpd, sep=''), coeff=ccm.3c$coeff))
rnames <- c(rnames, paste('ccm_', rownames(connect.constr.mat), sep=''))
}
##names
cnames <- c(cnames, paste('beta_', colnames(sp), sep=''))
rownames.f <- factor(amat.3c$cpd, levels=rnames, ordered=TRUE)
colnames.f <- factor(amat.3c$rxn, levels=cnames, ordered=TRUE)
##amat
amat <- sparseMatrix(i=as.numeric(rownames.f), j=as.numeric(colnames.f), x=amat.3c$coeff, dimnames=list(levels(rownames.f), levels(colnames.f)))
##other vectors
sense <- c(rep(se, nconds*nmets), rep('L', nrow(amat)-nconds*nmets))
rhs <- numeric(nrow(amat))
lb <- numeric(ncol(amat))
#names
names(obj) <- names(lb) <- names(ub) <- colnames(amat)
names(sense) <- names(rhs) <- rownames(amat)
##goals/reqs
if (length(goal.conds)>0){
obj[paste('cond', goal.conds, '_', biomass, sep='')] <- goal.coeff
ub[paste('cond', goal.conds, '_', biomass, sep='')] <- bm.ub
}
if (!is.null(req.conds)){ lb[paste('cond', req.conds, '_', biomass, sep='')] <- lb.req }
if (!is.null(known.rxns)){ lb[paste('beta_', known.rxns, sep='')] <- 1 }
##rcplex
if (is.null(mipstart)){ vtype <- rep('C', ncol(amat)) } else { vtype <- rep(c('C', 'B'), times=c(ncol(amat)-nrxns, nrxns)) }
#(mi)lp
mp <- Rcplex(cvec=obj, Amat=amat, bvec=rhs, ub=ub, lb=lb, sense=sense, objsense='max', vtype=vtype, mipstart=mipstart, control=ctrl)
cat('CPLEX status of LP', mp$stat, '\n')
x <- mp$xopt
names(x) <- names(obj)
v <- x[1:nrxns]
x0 <- x[grep('^beta_', names(x))]
#names(x0) <- gsub('^beta_', '', x=names(x0))
accum.slack <- x[grep('^accum_slack_', names(x))]
deplete.slack <- x[grep('^deplete_slack_', names(x))]
##what to return? beta.v & accum/deplete slack
ret.mat <- matrix(cbind(x0, obj[1:nrxns]), ncol=2, dimnames=list(names(obj)[1:nrxns], c('beta.v', 'obj.coeff')))
ret.rcplex <- mp
if (!md){ ret.md <- NULL } else { ret.md <- matrix(cbind(accum.slack, deplete.slack), ncol=2, dimnames=list(mets.intra, c('accum', 'deplete'))) }
return(list(mat=ret.mat, md=ret.md, rcplex=ret.rcplex))
}