-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathIVUS_gating.py
165 lines (137 loc) · 5.56 KB
/
IVUS_gating.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from PyQt5.QtWidgets import QProgressDialog
from PyQt5.QtCore import Qt
def IVUS_gating(images, speed, frame_rate, show_progress=True):
"""Performs gating of IVUS images"""
if len(images.shape) == 4:
images = images[:, :, :, 0]
num_images = images.shape[0]
pullback = speed*(num_images-1)/frame_rate # first image is recorded instantly so no time delay
s0 = np.zeros((num_images-1, 1))
s1 = np.zeros((num_images-1, 1))
if show_progress:
progress = QProgressDialog()
progress.setWindowFlags(Qt.Dialog)
progress.setModal(True)
progress.setMinimum(0)
progress.setMaximum(num_images-1)
progress.resize(500,100)
progress.setValue(0)
progress.setValue(1)
progress.setValue(0) # trick to make progress bar appear
progress.setWindowTitle("Computing end diastolic images")
progress.show()
for i in range(num_images-1):
C = normxcorr(images[i, :, :], images[i+1, :, :])
s0[i] = 1 - np.max(C)
gradx, grady = np.gradient(images[i, :, :])
gradmag = abs(np.sqrt(gradx**2 + grady**2))
s1[i] = -np.sum(gradmag)
if show_progress:
progress.setValue(i)
if progress.wasCanceled():
break
if show_progress:
if progress.wasCanceled():
return None
progress.close()
# normalize data
s0_plus = s0 - np.min(s0)
s1_plus = s1 - np.min(s1)
s0_norm = s0_plus/np.sum(s0_plus)
s1_norm = s1_plus/np.sum(s1_plus)
alpha=0.25
s = alpha*s0_norm + (1-alpha)*s1_norm
# determine Fs (sampling frequency)
t = np.linspace(0,pullback/speed,num_images)
Fs = num_images/np.max(t);
NFFT = int(2**np.ceil(np.log2(np.abs(len(s)))))
ss = np.fft.fft(s,NFFT, 0)/len(s)
freq = Fs/2*np.linspace(0,1,NFFT//2+1)
# in order to return correct amplitude fft must be divided by length of sample
freq[freq<0.75]=0
freq[freq>1.66]=0
ss1 = ss[0:NFFT//2+1]
ss1[freq == 0]=0
# determine maximum frequency component of ss
fm = np.argmax(np.abs(ss1))
fm = freq[fm]
# find cutoff frequency
sigma=0.4
fc = (1 + sigma)*fm
# construct low pass kernal (fmax is half of the transducer frame rate)
fmax = Fs/2
tau = 25/46
v = 21/46
f = ((fc/fmax)*np.sinc((fc*np.arange(1, num_images+1))/fmax))*(tau - v*np.cos(2*np.pi*(np.arange(1, num_images+1)/num_images)))
# determine low frequency signal
s_low = np.convolve(s[:, 0],f)
s_low = s_low[0:len(s)] # take first half only
# find first minimum in heartbeat
hr_frames = int(np.round(Fs/fm)) # heart rate in frames
idx = np.argmin(s_low[0:hr_frames])
p = []
p.append(idx)
k=0
while idx < (num_images - hr_frames):
k =k + 1
# based on known heart rate seach within 2 frames for local minimum
# increase fc to look at higher frequencies
idx2 = idx + np.arange(hr_frames-2, hr_frames+3)
# find local minimum
idx2 = idx2[idx2 < num_images -1]
min_idx = np.argmin(s_low[idx2])
idx = idx2[min_idx]
p.append(idx)
fc = fc + fm
j = 1
s_low = np.expand_dims(s_low, 1)
while fc < fmax:
# recalculate f with new fc value
f = ((fc/fmax)*np.sinc((fc*np.arange(1, num_images+1))/fmax))*(tau - v*np.cos(2*np.pi*(np.arange(1, num_images+1)/num_images)))
# add extra columns to s_low to create surface as in paper
s_temp = np.expand_dims(np.convolve(s[:,0],f), 1)
s_low = np.concatenate((s_low, s_temp[0:len(s)]), 1)
# adjust each previous minimum p(i) to the nearest minimum
for i in range(len(p)):
# find index of new lowest p in +/-1 neighbour search
search_index = np.arange(p[i]-1, p[i]+2)
search_index = search_index[search_index >= 0]
search_index = search_index[search_index < len(s)] # <=?
search_index = np.in1d(np.arange(0, len(s)), search_index)
# determine index of min value in the specified neighbour range
min_value = np.argmin(s_low[search_index, j])
# switch from logical to indexed values
search_index = np.argwhere(search_index)
p[i] = search_index[min_value][0]
# iteratively adjust to the new minimum
# increase fc to look at higher frequencies
fc = fc + fm
j = j + 1
# normalize each column of s_low
max_values = np.max(s_low, 0)
s_low_norm = s_low/np.tile(max_values, [len(s), 1])
# group images between p(i) and p(i+1)
# output frames corresponding to each cardiac phase
HB = []
for i in range(len(p) - 1):
HB.append(list(np.arange(p[i], p[i + 1])))
# identify P cardiac phases (where P is the amount of frames in shortest heartbeat
P = [len(entry) for entry in HB]
P = min(P)
# each column in U corresponds to a cardiac phase (systole, diastole)
U = np.zeros((len(HB), P))
for i in range(len(HB)):
U[i , :] = HB[i][0:P]
# determine heartbeat period
t_HB = t[p[1:]] - t[p[:-1]]
return p
def normxcorr(image1, image2):
C = np.zeros_like(image1)
image1_mean = np.mean(image1)
image2_mean = np.mean(image2)
image1_std = np.std(image1)
image2_std = np.std(image2)
C = np.sum((image1 - image1_mean)*(image2 - image2_mean))/(image1_std*image2_std)
C = C/(image1.shape[0]*image1.shape[1])
return C