-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOCT_sheath_segmentation.m
223 lines (198 loc) · 10.3 KB
/
OCT_sheath_segmentation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
function OCT_sheath = OCT_sheath_segmentation(OCT_polar, output_size)
% this function segments an OCT sheath by finding the best match of a range
% of catheter sizes. The sheath match has larger values for the inner
% sheath compared to the outer sheath so as to prevent it from moving
% towards the lumen in contact with the sheath. The input is OCT images in
% the polar domain, while the output is a nxm matrix where n is the A-line
% column where the sheath ends and m corresponds to each image in the
% pullback
% the diameter of the sheath is approximately 100 pixels in a 1024x0124
% image, so we select a range of radii for different sheath sizes
% open a window that allows for an interactive measure of the sheath radius
% by selecting 2 points on the sheath
OCT_image= Polar2Im(double(OCT_polar(:,:,8)'), output_size, 'linear');
fig = figure;
imshow(OCT_image(output_size/2-100:output_size/2+100,output_size/2-100:output_size/2+100),[0 300])
fig.set('units','normalized','outerposition',[0 0 1 1])
title('Place 2 points that define the diameter of the outer sheath, then press return. Next place 2 points that describe the inner diameter of the sheath, then press return')
[x y] = getpts();
r_o = sqrt((x(1) - x(2)).^2 + (y(1) - y(2)).^2)/2;
hold on, plot(x, y, 'r')
[x y] = getpts();
r_i = sqrt((x(1) - x(2)).^2 + (y(1) - y(2)).^2)/2;
plot(x, y, 'c')
close(gcf)
r_o = r_o-2:2:r_o+2;
r_i = r_i-2:2:r_i+2;
ix = output_size;
iy = output_size;
% pre-allocate memory
sheath_contour = cell(length(OCT_polar(1, 1, :)), 1);
sheath_centroid_point = zeros(length(OCT_polar(1, 1, :)), 2);
h = waitbar(0, 'processing images');
% pre-allocate a 4d matrix for the sheath mask, row and columns specify the
% pixel coordinates, third dimension the and the fourth dimension for
% different radii
sheath_mask = zeros(output_size, output_size, 13*13, length(r_o));
% create an array that contains the potential masks and then apply to each
% image
for j = 1:length(r_o)
ii = 1;
for cx = output_size/2 - 6:output_size/2 + 6
for cy = output_size/2 - 6:output_size/2 + 6
% cx and cy describe the center of the mask
[x y] = meshgrid(-(cx - 1):(ix - cx), -(cy - 1):(iy - cy));
% c_mask = ((x.^2 + y.^2) <= r(j)^2);
c_mask = ((x.^2 + y.^2) <= r_o(j)^2);
c_mask2 = bwdist(bwdist(c_mask));
% set pixels that should correspond to the sheath equal to a large value
c_mask3 = double(c_mask);
c_mask3(c_mask == 1) = 0.5;
% mask outer sheath edge (first 2 pixels) from binary distance image
c_mask2(c_mask2 == 0) = max(max(c_mask2)); % remove all zeros first
c_mask3(c_mask2 <= 2) = 1;
% mask out inner sheath edge as this falls within a certain pixel size
c_mask2(c_mask2 > (r_o(j)-r_i(j))) = 0;
c_mask2(c_mask2 < (r_o(j)-r_i(j) - 2)) = 0;
% give a higher strength to the inner sheath as this will not
% encounter noise such as blood or the lumen
c_mask3(c_mask2 ~= 0) = 2;
sheath_mask(:, :, ii, j) = c_mask3;
ii = ii + 1;
end
end
end
for i = 1:length(OCT_polar(1, 1, :))
waitbar(i/length(OCT_polar(1, 1, :)));
% convert to cartesian domain
OCT_image= Polar2Im(double(OCT_polar(:,:,i)'), output_size, 'linear');
% make a duplicate for processing later
OCT_image2 = OCT_image;
% remove very high intensities such as the guidewire to aid in the
% segmentation
OCT_image(OCT_image == -Inf) = 30;
OCT_image(OCT_image > 100) = 0;
% h=fspecial('gaussian', [round(2*3) round(2*3)], 3);
% OCT_image = imfilter(OCT_image, h);
image_med = zeros(13, 13, 3);
image_med2 = zeros(13, 13, 3);
for j = 1:length(r_o)
ii = 1;
for cx = output_size/2 - 6:output_size/2 + 6
for cy = output_size/2 - 6:output_size/2 + 6
% % cx and cy describe the center of the mask
% [x y] = meshgrid(-(cx - 1):(ix - cx), -(cy - 1):(iy - cy));
% % c_mask = ((x.^2 + y.^2) <= r(j)^2);
%
% c_mask = ((x.^2 + y.^2) <= r_o(j)^2);
% c_mask2 = bwdist(bwdist(c_mask));
%
% % set pixels that should correspond to the sheath equal to a large value
% c_mask3 = double(c_mask);
% c_mask3(c_mask == 1) = 0.5;
% % mask outer sheath edge (first 2 pixels) from binary distance image
% c_mask2(c_mask2 == 0) = max(max(c_mask2)); % remove all zeros first
% c_mask3(c_mask2 <= 2) = 1;
% % mask out inner sheath edge as this falls within a certain pixel size
% c_mask2(c_mask2 > (r_o(j)-r_i(j))) = 0;
% c_mask2(c_mask2 < (r_o(j)-r_i(j) - 2)) = 0;
% % give a higher strength to the inner sheath as this will not
% % encounter noise such as blood or the lumen
% c_mask3(c_mask2 ~= 0) = 2;
% weighted_image = c_mask3.*OCT_image;
%
% image_med(cx -505, cy - 505, j) = mean(weighted_image(c_mask));
weighted_image = sheath_mask(:, :, ii, j).*OCT_image;
% create a binary image for averaging the pixels in the
% ROI, add 0.5 so that values that equal 0.5 are included
% in the binary image
c_mask = im2bw(sheath_mask(:, :, ii, j)+.5);
image_med(cx - (output_size/2 - 7), cy - (output_size/2 - 7), j) = mean(weighted_image(c_mask));
% image_med2(cx - 505, cy - 505, j) = median(weighted_image(c_mask));
ii = ii + 1;
% weight the values at the center of the circle greater in
% order to constrain circle from moving too far
% image_med(cx -length(OCT_polar(:, 1, 1)), cy -length(OCT_polar(:, 1, 1)), j) = mean(OCT_image(c_mask));
end
end
end
% in order to avoid guidewire artifact and the wall assign large values a
% a zero value
% [cx cy cz] = ind2sub(size(image_med), find(image_med == max(max(max(image_med)))));
% cx = cx + 506;
% cy = cy + 506;
%
% [x y] = meshgrid(-(cx - 1):(ix - cx), -(cy - 1):(iy - cy));
% c_mask = ((x.^2 + y.^2) <= r_o(cz)^2);
[mask_no(1) mask_no(2) r_no] = ind2sub(size(image_med), find(image_med == max(max(max(image_med)))));
c_mask = sheath_mask(:, :, sub2ind(size(image_med(:,:,1)), mask_no(2), mask_no(1)), r_no);
% mask_image = zeros(size(OCT_image(:, :, 1)));
% mask_image(c_mask == 1) = OCT_image(c_mask);
% OCT_image2=OCT_image./max(max(OCT_image));
% figure, h1 = imshow(OCT_image2, [])
% hold on
% h2=imshow(c_mask3,[])
% h3=imshow(mask_image,[])
% hold off
% axis([ 460 580 450 570])
% alpha = ones(size(OCT_image))*0.25;
% set(h3, 'AlphaData', alpha)
% % mask the catheter sheath out of the image
% OCT_sheath = imcomplement(c_mask).*OCT_image2;
% OCT_sheath_polar(:, :, i) = polartrans(OCT_sheath, 960,length(OCT_polar(:, 1, 1)), 512, 512, 'linear' ,'valid');
% dtermine contour points, 1st column is y and 2nd column is x
sheath_contour{i} = cell2mat(bwboundaries(c_mask));
% determine sheath centroid
sheath_centroid = [];
% reverse indexes so that find outputs x into first column
[sheath_centroid(:, 2) sheath_centroid(:, 1)] = find(c_mask);
sheath_centroid_point(i, :) = [mean(sheath_centroid(:, 1)) mean(sheath_centroid(:, 2))];
end
close(h)
% apply a filter to the centroid position as this should not change greatly
% between successive images
sheath_centroid_filtered(:, 1) = medfilt1(sheath_centroid_point(:, 1), 5);
sheath_centroid_filtered(:, 2) = medfilt1(sheath_centroid_point(:, 2), 5);
% move the contour if the centroid position has changed
% convert the images to cartesian coordinates
move_sheath = sheath_centroid_point - sheath_centroid_filtered;
% as the sheath contour has x coorindates in the 2nd column we switch the
% order here to match it
move_sheath = fliplr(move_sheath);
OCT_sheath = zeros(length(OCT_polar(:, 1, 1)), length(OCT_polar(1, 1, :)));
for i=1:length(OCT_polar(1,1,:))
% move the sheath contour to the new coordinates in the filtered center
sheath_contour{i} = sheath_contour{i} - repmat(move_sheath(i, :),length(sheath_contour{i}(:,1)), 1);
% the cartesian translation at the beginning sends the first A-line to
% be the at 12 o'clock and it follows clockwise
% convert cartesian coordinaets to polar coordinates
OCT_sheath_polar = [];
[OCT_sheath_polar(:, 2) OCT_sheath_polar(:, 1)] = cart2pol(sheath_contour{i}(:, 2) - output_size/2, sheath_contour{i}(:, 1) - output_size/2);
% convert to 0 to 2pi range
OCT_sheath_polar(OCT_sheath_polar < 0) = OCT_sheath_polar(OCT_sheath_polar < 0)+2*pi;
% convert pixel size in cartesian to polar based on image sizes
OCT_sheath_polar(:,1) = OCT_sheath_polar(:,1).*(length(OCT_polar(1, :, 1))/(output_size/2));
% remove duplicates and interpolate to match the no. of A lines
OCT_sheath_polar = unique(OCT_sheath_polar,'rows');
OCT_sheath_polar = sortrows(OCT_sheath_polar, 2);
OCT_sheath_interp = interp1(OCT_sheath_polar(:,2), OCT_sheath_polar(:, 1), linspace(0, 2*pi-(2*pi)/length(OCT_polar(:,1, 1)),length(OCT_polar(:, 1, 1)))', 'linear', 'extrap');
% shift the contour by 90 degrees
OCT_sheath_interp = circshift(OCT_sheath_interp,length(OCT_polar(:, 1, 1))/4);
OCT_sheath(:, i) = round(OCT_sheath_interp);
end
% cx = sheath_centroid_point(i, 2);
% cy = sheath_centroid_point(i, 1);
% [x y] = meshgrid(-(cx - 1):(ix - cx), -(cy - 1):(iy - cy));
% c_mask = ((x.^2 + y.^2) <= r_o^2);
% OCT_image2 = Polar2Im(double(OCT_polar(:,:,i)'), output_size, 'linear');
% OCT_sheath = imcomplement(c_mask).*OCT_image2;
% OCT_sheath_polar(:, :, i) = polartrans(OCT_sheath, 960,length(OCT_polar(:, 1, 1)), 512, 512, 'linear' ,'valid');
% end
%
% figure,imshow(Polar2Im(double(OCT_polar(:,:,5)'), output_size, 'linear'), [0 100])
% hold on
% plot(sheath_contour{5}(:, 2), sheath_contour{5}(:, 1),'r')
%
% figure, imshow(OCT_polar(:,:, 338), [0 100])
% hold on
% s1=plot(OCT_sheath(:,i), 1:length(OCT_polar(:,1)))