-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathfma.py
400 lines (329 loc) · 9.42 KB
/
fma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Based on golang's src/math/fma.go
#
# Copyright (c) 2009-2019 The Go Authors. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import struct
F16_BIAS = 15
F16_FRACTION_BITS = 10
F16_FRACTION_MASK = (1 << F16_FRACTION_BITS) - 1
F16_EXPONENT_BITS = 5
F16_EXPONENT_MASK = (1 << F16_EXPONENT_BITS) - 1
F16_SIGN_SHIFT = F16_EXPONENT_BITS + F16_FRACTION_BITS
F32_BIAS = 127
F32_FRACTION_BITS = 23
F32_FRACTION_MASK = (1 << F32_FRACTION_BITS) - 1
F32_EXPONENT_BITS = 8
F32_EXPONENT_MASK = (1 << F32_EXPONENT_BITS) - 1
F32_SIGN_SHIFT = F32_EXPONENT_BITS + F32_FRACTION_BITS
F64_BIAS = 1023
F64_FRACTION_BITS = 52
F64_FRACTION_MASK = (1 << F64_FRACTION_BITS) - 1
F64_EXPONENT_BITS = 11
F64_EXPONENT_MASK = (1 << F64_EXPONENT_BITS) - 1
F64_SIGN_SHIFT = F64_EXPONENT_BITS + F64_FRACTION_BITS
F64_ONE = F64_BIAS << F64_FRACTION_BITS
F64_NAN_BITS = 0x7FF8000000000000
F64_INFINITY_BITS = 0x7FF0000000000000
ARM64_NANS = False
F64_QNAN_BIT = (1 << 51)
# Internal magic exponent values
ZERO_EXP = -(F64_BIAS * 8) # zero: ensure it's smaller than the smallest product
INF_EXP = F64_BIAS * 8 # infinity: ensure it's larger than the largest product
def saturate64(bits):
s = bits >> F64_SIGN_SHIFT
e = (bits >> F64_FRACTION_BITS) & F64_EXPONENT_MASK
f = bits & F64_FRACTION_MASK
if s or (e == F64_EXPONENT_MASK and f):
return 0
if bits > F64_ONE:
return F64_ONE
return bits
# NOTE: this rounding trick doesn't account for the sign bit
# (e.g. for round to -inf modes)
# although could just use "round(m, ROUND_AWAY_FROM_ZERO) if sign else round(m, ROUND_TO_ZERO)"
# Rounding modes:
#
# Index bits are the least significant 3 bits when rounding, i.e. the first is
# the least-significant-bit if truncated, the second is the half bit, and the
# third is the dirty bit (set if any bit of lesser significance would be set).
# The result is added to the truncated fraction ("1" to round away from zero,
# or "0" to truncate.)
#
# For example, 010 and 110 both indicate an exact result, half way between
# representable values, but round differently in ROUND_NEAREST_EVEN and
# ROUND_TO_ODD modes, depending on whether the truncated value is odd or
# even.
ROUND_NEAREST_EVEN = [
0, # 000
0, # 001
0, # 010
1, # 011
0, # 100
0, # 101
1, # 110
1, # 111
]
ROUND_TO_ODD = [
0, # 000
1, # 001
1, # 010
1, # 011
0, # 100
0, # 101
0, # 110
0, # 111
]
ROUND_TO_ZERO = [
0, # 000
0, # 001
0, # 010
0, # 011
0, # 100
0, # 101
0, # 110
0, # 111
]
ROUND_AWAY_FROM_ZERO = [
0, # 000
1, # 001
1, # 010
1, # 011
0, # 100
1, # 101
1, # 110
1, # 111
]
def do_rounding(m, mode=ROUND_NEAREST_EVEN):
return (m >> 2) + mode[m & 7]
def shr_compress(v, shift):
flag = 1 if v & ((1 << shift) - 1) else 0
return (v >> shift) | flag
def u32_to_f32(v):
return struct.unpack('<f', struct.pack('<I', v))[0]
def f32_to_u32(v):
return struct.unpack('<I', struct.pack('<f', v))[0]
def f64_to_u64(f64):
return struct.unpack('<Q', struct.pack('<d', f64))[0]
def u64_to_f64(u64):
return struct.unpack('<d', struct.pack('<Q', u64))[0]
def u16_to_f16(u64):
return struct.unpack('<e', struct.pack('<H', u64))[0]
def f16_to_u16(u64):
return struct.unpack('<H', struct.pack('<e', u64))[0]
def leading_zeroes_64(v):
return len(format(v, '064b').split('1')[0])
def leading_zeroes_128(v):
return len(format(v, '0128b').split('1')[0])
def f16_to_f64(bits, ftz=False):
s = bits >> F16_SIGN_SHIFT
e = (bits >> F16_FRACTION_BITS) & F16_EXPONENT_MASK
f = bits & F16_FRACTION_MASK
if e == F16_EXPONENT_MASK:
e = F64_EXPONENT_MASK
elif e == 0:
if f == 0 or ftz:
e = 0
f = 0
else:
while (f & (1 << F16_FRACTION_BITS)) == 0:
f <<= 1
e -= 1
e += 1
f &= F16_FRACTION_MASK
e = (e - F16_BIAS + F64_BIAS)
else:
e = (e - F16_BIAS + F64_BIAS)
return (s << F64_SIGN_SHIFT) | (e << F64_FRACTION_BITS) | (f << (F64_FRACTION_BITS - F16_FRACTION_BITS))
def f32_to_f64(bits, ftz=False):
s = bits >> F32_SIGN_SHIFT
e = (bits >> F32_FRACTION_BITS) & F32_EXPONENT_MASK
f = bits & F32_FRACTION_MASK
if e == F32_EXPONENT_MASK:
e = F64_EXPONENT_MASK
elif e == 0:
if f == 0 or ftz:
e = 0
f = 0
else:
while (f & (1 << F32_FRACTION_BITS)) == 0:
f <<= 1
e -= 1
e += 1
f &= F32_FRACTION_MASK
e = (e - F32_BIAS + F64_BIAS)
else:
e = (e - F32_BIAS + F64_BIAS)
return (s << F64_SIGN_SHIFT) | (e << F64_FRACTION_BITS) | (f << (F64_FRACTION_BITS - F32_FRACTION_BITS))
def f64_to_f32(bits, ftz=False):
s = bits >> F64_SIGN_SHIFT
e = (bits >> F64_FRACTION_BITS) & F64_EXPONENT_MASK
f = bits & F64_FRACTION_MASK
if e == F64_EXPONENT_MASK:
e = F32_EXPONENT_MASK
elif e == 0 and f == 0:
e = 0
else:
e = (e - F64_BIAS + F32_BIAS)
if ftz:
if e <= 0:
f = 0
e = 0
else:
if e < -F32_FRACTION_BITS:
e = 0
f = 1
elif e <= 0:
f |= 1 << F64_FRACTION_BITS
f = shr_compress(f, -e + 1)
e = 0
if e >= F32_EXPONENT_MASK:
e = F32_EXPONENT_MASK
f = 0
f = shr_compress(f, (F64_FRACTION_BITS - F32_FRACTION_BITS - 2))
return (s << F32_SIGN_SHIFT) + (e << F32_FRACTION_BITS) + do_rounding(f)
def f64_to_f16(bits, ftz=False):
s = bits >> F64_SIGN_SHIFT
e = (bits >> F64_FRACTION_BITS) & F64_EXPONENT_MASK
f = bits & F64_FRACTION_MASK
if e == F64_EXPONENT_MASK:
e = F16_EXPONENT_MASK
elif e == 0 and f == 0:
e = 0
else:
e = (e - F64_BIAS + F16_BIAS)
if ftz:
if e <= 0:
f = 0
e = 0
else:
if e < -F16_FRACTION_BITS:
e = 0
f = 1
elif e <= 0:
f |= 1 << F64_FRACTION_BITS
f = shr_compress(f, -e + 1)
e = 0
if e >= F16_EXPONENT_MASK:
e = F16_EXPONENT_MASK
f = 0
f = shr_compress(f, (F64_FRACTION_BITS - F16_FRACTION_BITS - 2))
return (s << F16_SIGN_SHIFT) + (e << F16_FRACTION_BITS) + do_rounding(f)
def split(b):
sign = b >> 63
exp = (b >> 52) & F64_EXPONENT_MASK
mantissa = b & F64_FRACTION_MASK
if exp == F64_EXPONENT_MASK:
exp = INF_EXP
mantissa |= 1 << 52
elif exp == 0 and mantissa == 0:
exp = ZERO_EXP
elif exp == 0:
# Normalize value if subnormal.
shift = leading_zeroes_64(mantissa) - 11
mantissa <<= shift
exp = 1 - shift
else:
# Add implicit 1 bit
mantissa |= 1 << 52
return sign, exp, mantissa
def is_snan(b):
m = b & F64_FRACTION_MASK
e = (b >> F64_FRACTION_BITS) & F64_EXPONENT_MASK
return e == F64_EXPONENT_MASK and m != 0 and (m & F64_QNAN_BIT) == 0
def is_nan(b):
m = b & F64_FRACTION_MASK
e = (b >> F64_FRACTION_BITS) & F64_EXPONENT_MASK
return e == F64_EXPONENT_MASK and m != 0
def is_inf(e, m):
m &= ((1 << 52) - 1)
return e == INF_EXP and m == 0
def bfma64(bx, by, bz, meta=None, rounding=ROUND_NEAREST_EVEN):
if meta is None:
meta = []
xs, xe, xm = split(bx)
ys, ye, ym = split(by)
zs, ze, zm = split(bz)
if ARM64_NANS:
for v in (bz, bx, by):
if is_snan(v):
return v | F64_QNAN_BIT
for v in (bz, bx, by):
if is_nan(v):
return v
else:
for v in (bz, bx, by):
if is_nan(v):
return F64_NAN_BITS
if is_inf(xe, xm) and ym == 0:
return F64_NAN_BITS
if xm == 0 and is_inf(ye, ym):
return F64_NAN_BITS
# product
ps = xs ^ ys
pe = xe + ye - F64_BIAS + 1
pm = (xm * ym) << 21
if (is_inf(xe, xm) or is_inf(ye, ym)) and is_inf(ze, zm) and ps != zs:
return F64_NAN_BITS
zm <<= 74
if (xm == 0 or ym == 0) and zm == 0 and zs == ps:
return zs << 63
# normalize to 126th bit
if ((pm >> 126) & 1) == 0:
pm <<= 1
pe -= 1
# Swap addition operands so |p| >= |z|
if pe < ze or (pe == ze and (pm < zm)):
ps, pe, pm, zs, ze, zm = zs, ze, zm, ps, pe, pm
zm = shr_compress(zm, pe-ze)
if ps == zs:
# Adding
pm += zm
carry = (pm >> 127)
if carry == 0:
pe -= 1
m = shr_compress(pm, (64 + carry))
else:
# Subtracting
pm -= zm
nz = leading_zeroes_128(pm)
pe -= nz
m = shr_compress(pm << (nz - 1), 64)
if pe > 1022 + F64_BIAS or (pe == 1022 + F64_BIAS and (m+(1 << 9))>>63 == 1):
# rounded value overflows exponent range
return (ps << 63) | F64_INFINITY_BITS
if pe < 0:
m = shr_compress(m, -pe)
pe = 0
if m == 0:
# exact, unrounded zero gets sign=0
ps = 0
m = shr_compress(m, 8)
m = do_rounding(m, rounding)
if m == 0:
pe = 0
return (ps << 63) + (pe << 52) + m