forked from ianfab/variantfishtest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat_util.py
139 lines (108 loc) · 4.37 KB
/
stat_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import math
def erf(x):
# Python 2.7 defines math.erf(), but we need to cater for older versions.
a = 8 * (math.pi - 3) / (3 * math.pi * (4 - math.pi))
x2 = x * x
y = -x2 * (4 / math.pi + a * x2) / (1 + a * x2)
return math.copysign(math.sqrt(1 - math.exp(y)), x)
def erf_inv(x):
# Above erf formula inverted analytically
a = 8 * (math.pi - 3) / (3 * math.pi * (4 - math.pi))
y = math.log(1 - x * x)
z = 2 / (math.pi * a) + y / 2
return math.copysign(math.sqrt(math.sqrt(z * z - y / a) - z), x)
def phi(q):
# Cumlative distribution function for the standard Gaussian law: quantile -> probability
return 0.5 * (1 + erf(q / math.sqrt(2)))
def phi_inv(p):
# Quantile function for the standard Gaussian law: probability -> quantile
assert (0 <= p <= 1)
return math.sqrt(2) * erf_inv(2 * p - 1)
def elo(x):
if x <= 0:
return 0.0
return -400 * math.log10(1 / x - 1)
def get_elo(WLD):
# win/loss/draw ratio
N = sum(WLD)
w = float(WLD[0]) / N
l = float(WLD[1]) / N
d = float(WLD[2]) / N
# mu is the empirical mean of the variables (Xi), assumed i.i.d.
mu = w + d / 2
# stdev is the empirical standard deviation of the random variable (X1+...+X_N)/N
stdev = math.sqrt(w * (1 - mu) ** 2 + l * (0 - mu) ** 2 + d * (0.5 - mu) ** 2) / math.sqrt(N)
# 95% confidence interval for mu
mu_min = mu + phi_inv(0.025) * stdev
mu_max = mu + phi_inv(0.975) * stdev
el = elo(mu)
elo95 = (elo(mu_max) - elo(mu_min)) / 2
los = phi((mu - 0.5) / stdev)
return el, elo95, los
def bayeselo_to_proba(elo, drawelo):
"""
elo is expressed in BayesELO (relative to the choice drawelo).
Returns a probability, P['win'], P['loss'], P['draw']
"""
P = {}
P['win'] = 1.0 / (1.0 + pow(10.0, (-elo + drawelo) / 400.0))
P['loss'] = 1.0 / (1.0 + pow(10.0, (elo + drawelo) / 400.0))
P['draw'] = 1.0 - P['win'] - P['loss']
return P
def proba_to_bayeselo(P):
"""
Takes a probability: P['win'], P['loss']
Returns elo, drawelo
"""
assert (0 < P['win'] < 1 and 0 < P['loss'] < 1)
elo = 200 * math.log10(P['win'] / P['loss'] * (1 - P['loss']) / (1 - P['win']))
drawelo = 200 * math.log10((1 - P['loss']) / P['loss'] * (1 - P['win']) / P['win'])
return elo, drawelo
def SPRT(R, elo0, alpha, elo1, beta, drawelo):
"""
Sequential Probability Ratio Test
H0: elo = elo0
H1: elo = elo1
alpha = max typeI error (reached on elo = elo0)
beta = max typeII error for elo >= elo1 (reached on elo = elo1)
R['wins'], R['losses'], R['draws'] contains the number of wins, losses and draws
Returns a dict:
finished - bool, True means test is finished, False means continue sampling
state - string, 'accepted', 'rejected' or ''
llr - Log-likelihood ratio
lower_bound/upper_bound - SPRT bounds
"""
result = {
'finished': False,
'state': '',
'llr': 0.0,
'lower_bound': math.log(beta / (1 - alpha)),
'upper_bound': math.log((1 - beta) / alpha),
}
# Estimate drawelo out of sample
if R['wins'] > 0 and R['losses'] > 0 and R['draws'] > 0:
N = R['wins'] + R['losses'] + R['draws']
P = {'win': float(R['wins']) / N, 'loss': float(R['losses']) / N, 'draw': float(R['draws']) / N}
elo, drawelo = proba_to_bayeselo(P)
else:
return result
# Probability laws under H0 and H1
P0 = bayeselo_to_proba(elo0, drawelo)
P1 = bayeselo_to_proba(elo1, drawelo)
# Log-Likelyhood Ratio
result['llr'] = R['wins'] * math.log(P1['win'] / P0['win']) + R['losses'] * math.log(P1['loss'] / P0['loss']) + R[
'draws'] * math.log(P1['draw'] / P0['draw'])
if result['llr'] < result['lower_bound']:
result['finished'] = True
result['state'] = 'rejected'
elif result['llr'] > result['upper_bound']:
result['finished'] = True
result['state'] = 'accepted'
return result
if __name__ == "__main__":
# unit tests
print(SPRT({'wins': 10, 'losses': 0, 'draws': 20}, 0, 0.05, 5, 0.05, 200))
print(SPRT({'wins': 10, 'losses': 1, 'draws': 20}, 0, 0.05, 5, 0.05, 200))
print(SPRT({'wins': 5019, 'losses': 5026, 'draws': 15699}, 0, 0.05, 5, 0.05, 200))
print(SPRT({'wins': 1450, 'losses': 1500, 'draws': 4000}, 0, 0.05, 6, 0.05, 200))
print(SPRT({'wins': 716, 'losses': 591, 'draws': 2163}, 0, 0.05, 6, 0.05, 200))