-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdistribution.py
737 lines (613 loc) · 24.5 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# import os
# #must set these before loading numpy:
# os.environ["OMP_NUM_THREADS"] = '8' # export OMP_NUM_THREADS=4
# os.environ["OPENBLAS_NUM_THREADS"] = '8' # export OPENBLAS_NUM_THREADS=4
# os.environ["MKL_NUM_THREADS"] = '8' # export MKL_NUM_THREADS=6
# #os.environ["VECLIB_MAXIMUM_THREADS"] = '4' # export VECLIB_MAXIMUM_THREADS=4
# #os.environ["NUMEXPR_NUM_THREADS"] = '4' # export NUMEXPR_NUM_THREADS=6
import numpy as np
from numpy import linalg
import torch
from torch.distributions import dirichlet
from scipy.stats import norm
from scipy.stats import gamma, beta
from statsmodels.stats.proportion import proportion_confint
from utils import lambertWlog
# -------------auxiliary functions----------
def confint(cnt, N, alpha=0.001):
ret = proportion_confint(int(cnt), N, alpha, method='beta')
if 0 < cnt < N:
return ret
elif cnt == 0:
return (0., ret[1])
else:
return (ret[0], 1.)
# --------------internal functions--------------
def _compute_at_origin(d, k, sigma, logK, r):
def inv_gK(x):
# need to return g^-1(g(x)/K)
ans = sigma * np.sqrt(2.0 * k *
lambertWlog(logK / k + x * x / (2.0 * sigma * sigma * k) + np.log(x * x / (2.0 * sigma * sigma * k)))
)
ans = ans.real
return ans
ans = gamma(d / 2.0 - k).expect(
lambda x: beta((d - 1.0) / 2.0, (d - 1.0) / 2.0).cdf(
((sigma * np.sqrt(2.0 * x) + r)**2 - inv_gK(sigma * np.sqrt(2.0 * x))**2) / (4.0 * sigma * np.sqrt(2.0 * x) * r)
),
lb=0., ub=np.inf
)
return ans
def _compute_with_shift(d, k, sigma, logK, r):
def inv_gK(x):
# need to return g^-1(g(x)K)
ans = sigma * np.sqrt(2.0 * k *
lambertWlog(- logK / k + x * x / (2.0 * sigma * sigma * k) + np.log(
x * x / (2.0 * sigma * sigma * k)))
)
ans = ans.real
return ans
ans = 1.0 - gamma(d / 2.0 - k).expect(
lambda x: beta((d - 1.0) / 2.0, (d - 1.0) / 2.0).cdf(
((sigma * np.sqrt(2.0 * x) + r)**2 - inv_gK(sigma * np.sqrt(2.0 * x))**2) / (4.0 * sigma * np.sqrt(2.0 * x) * r)
),
lb=0., ub=np.inf
)
return ans
def _binary_search_logK(d, k, sigma, r, pA):
logK_lb, logK_ub = -100., 100.
EPS = 1e-6
while logK_ub - logK_lb > EPS:
# print(f' on {r} binary search logK in [{logK_lb}, {logK_ub}]')
logK_mid = (logK_lb + logK_ub) / 2.0
now_mass = _compute_at_origin(d, k, sigma, logK_mid, r)
if now_mass < pA:
logK_ub = logK_mid
else:
logK_lb = logK_mid
ans = logK_ub
return ans
def empirical_mean_norm(x):
return np.sqrt(np.average(np.linalg.norm(x, ord=2, axis=1) ** 2))
# --------------main functions--------------
def sample_l2_vec(d, batch_size, cuda=False):
"""
Sample L2 unit vectors
:param d: dimension of vector
:param batch_size: batch size
:return: in numpy format
"""
if cuda is False:
v = np.random.normal(size=(batch_size, d))
norms = linalg.norm(v, ord=2, axis=1)
v = v / norms[:, np.newaxis]
else:
v = torch.randn((batch_size, d)).cuda()
norms = v.norm(p=2, dim=1, keepdim=True)
v = v.div(norms.expand_as(v))
return v
def sample_linfty_vec(d, batch_size):
"""
Sample Linfty unit vectors
:param d: dimension of vector
:param batch_size: batch size
:return: in numpy format
"""
v = np.random.uniform(-1., 1., size=(batch_size, d))
ind = np.random.randint(low=0, high=d, size=batch_size)
v[np.arange(0, batch_size), ind] = np.random.randint(low=0, high=2, size=batch_size) * 2.0 - 1.0
return v
def sample_l1_vec(d, batch_size, cuda=False):
'''Sample uniformly from the unit l1 sphere, i.e. the cross polytope.
Stolen from Greg Yang's rs4a repo
Inputs:
device: 'cpu' | 'cuda' | other torch devices
shape: a pair (batchsize, dim)
Outputs:
matrix of shape `shape` such that each row is a sample.
'''
if cuda is False:
v = np.random.dirichlet(np.ones(d), batch_size)
sign = np.random.randint(low=0, high=2, size=(batch_size, d)) * 2. - 1.
v = v * sign
else:
dist = dirichlet.Dirichlet(torch.ones(d))
v = dist.sample_n(batch_size).cuda()
sign = torch.randint(low=0, high=2, size=(batch_size, d), device=torch.device('cuda')) * 2. - 1.
v = v * sign
return v
class Distribution(object):
"""
Abstract Distribution class
"""
def __init__(self, d, scale):
"""
Initialization of params
:param d: dimension of noise vectors
:param scale: The scale of noise variance.
Normalized to the noise magnitude of standrad L2 Gaussian with sigma = scale
"""
self.d, self.scale = d, scale
def sample(self, batch_size) -> np.ndarray:
raise NotImplementedError
def mean_norm(self) -> float:
raise NotImplementedError
def certify_radius(self, pA):
raise NotImplementedError
def info(self) -> str:
raise NotImplementedError
class StandardGaussian(Distribution):
"""
Standard L2 Gaussian
proc exp(-||x||_2^2 / (2 sigma^2))
"""
def __init__(self, d, scale, eps=1e-6, th=1.0):
super(StandardGaussian, self).__init__(d, scale)
self.sigma = scale
self.eps = eps
if th < 1.0 - eps:
# means the gaussian sampler is thresholded
# we need to figure out such threshold
self.thres = gamma(self.d / 2.0 - self.k).ppf(self.th)
print('thres set to:', self.thres)
def set_th(self, th):
if th < 1.0 - self.eps:
# means the gaussian sampler is thresholded
# we need to figure out such threshold
self.thres = gamma(self.d / 2.0 - self.k).ppf(th)
print('thres set to:', self.thres)
def sample(self, batch_size, cuda=False):
if not cuda:
v = norm.rvs(size=(batch_size, self.d)) * self.sigma
else:
v = torch.randn((batch_size, self.d), device='cuda') * self.sigma
return v
def mean_norm(self):
return self.sigma * np.sqrt(self.d)
def info(self):
return f'Standard Gaussian distribution with scale {self.scale} and sigma {self.sigma}'
def certify_radius(self, pA):
return self.sigma * norm.ppf(pA) if pA >= 0.5 else 0.0
class GeneralGaussian(Distribution):
"""
General L2 Gaussian
proc ||x||_2^{-2k} exp(-||x||_2^2 / (2 sigma^2))
"""
def __init__(self, d, k, scale, eps=1e-6, th=1.0):
super(GeneralGaussian, self).__init__(d, scale)
assert d % 2 == 0
assert k <= d/2 - 1
d, k = int(d), int(k)
self.k = k
self.sigma = np.sqrt(d / (d - 2.0 * k)) * self.scale
self.eps = eps
self.th = th
# the below tables are buffer, which stores the already computed certified radius
self.pAtable = dict()
self.rTable = dict()
if self.th < 1.0 - eps:
# means the gaussian sampler is thresholded
# we need to figure out such threshold
self.thres = gamma(self.d / 2.0 - self.k).ppf(self.th)
print('thres set to:', self.thres)
def set_th(self, th):
if th < 1.0 - self.eps:
# means the gaussian sampler is thresholded
# we need to figure out such threshold
self.th = th
self.thres = gamma(self.d / 2.0 - self.k).ppf(th)
# print('thres set to:', self.thres)
def sample(self, batch_size, cuda=False):
sigma = self.sigma
# corrected!
dist = gamma(self.d / 2.0 - self.k)
if self.th >= 1.0 - self.eps:
r_sq = dist.rvs(batch_size)
else:
cnt = 0
ans = np.zeros(2 * batch_size, dtype=np.float)
while cnt < batch_size:
r_sq = dist.rvs(batch_size)
now_cnt = np.sum(r_sq <= self.thres)
ans[cnt: cnt + now_cnt] = r_sq[r_sq <= self.thres]
cnt += now_cnt
# print(f'{now_cnt}/{cnt}')
# print('now batch:', r_sq)
# print('now accum:', ans)
# print('')
r_sq = ans[:batch_size]
r = np.sqrt(r_sq * (2.0 * sigma**2))
if cuda is True:
noises = torch.randn((batch_size, self.d)).cuda()
norms = noises.norm(p=2, dim=1, keepdim=True)
r = torch.tensor(r, dtype=torch.float32).cuda().reshape((batch_size, 1))
# print(r.shape)
noises = noises.div(norms.expand_as(noises)) * r
else:
noises = np.random.normal(size=(batch_size, self.d))
norms = linalg.norm(noises, ord=2, axis=1)
noises = noises / norms[:, np.newaxis] * r[:, np.newaxis]
return noises
def mean_norm(self):
return self.sigma * np.sqrt(self.d - 2.0 * self.k)
def info(self):
return f'General Gaussian distribution with scale {self.scale} and sigma {self.sigma}'
def certify_radius(self, pA):
if pA < 0.5:
return 0.0
key = int((pA - 0.5) * (1.0 / self.eps))
if abs(pA - self.pAtable.get(key, 0.0)) < self.eps:
# found
ans = self.rTable[key]
return ans
else:
# according to Yang et al, the certified radius is upper bounded by that of standard Gaussian
r_lb, r_ub = 0.0, self.sigma * norm.ppf(pA) * np.sqrt(1.0 - 2.0 * self.k / self.d)
print(f'!!! pA={pA}')
while r_ub - r_lb > self.eps:
# if r_ub - r_lb < 0.01:
# break
print(f'binary search r in [{r_lb}, {r_ub}]')
r_mid = (r_lb + r_ub) / 2.0
logK = _binary_search_logK(self.d, self.k, self.sigma, r_mid, pA)
shifted_pA = _compute_with_shift(self.d, self.k, self.sigma, logK, r_mid)
if shifted_pA > 0.5:
r_lb = r_mid
else:
r_ub = r_mid
ans = r_lb
self.pAtable[key] = pA
self.rTable[key] = r_lb
return ans
class LinftyGaussian(Distribution):
"""
Linfty Gaussian
proc exp(-||x||_infty^2 / (2 beta^2))
"""
def __init__(self, d, scale):
super(LinftyGaussian, self).__init__(d, scale)
self.beta = self.scale / np.sqrt(d / 3.0 + 2.0 / 3.0)
def sample(self, batch_size):
dist = gamma(self.d / 2.0)
r_sq = dist.rvs(batch_size)
r = np.sqrt(r_sq * (2.0 * self.beta**2))
v = sample_linfty_vec(self.d, batch_size)
v = r[:, np.newaxis] * v
return v
def mean_norm(self):
return self.beta * np.sqrt(self.d * (self.d / 3.0 + 2.0 / 3.0))
def info(self):
return f'Linfty Gaussian distribution with scale {self.scale} and beta {self.beta}'
class LinftyGeneralGaussian(Distribution):
"""
Linfty Gaussian
proc exp(-||x||_infty^2 / (2 beta^2))
"""
def __init__(self, d, k, scale, eps=1e-6, N=500000, alpha=0.001, batch=1000):
super(LinftyGeneralGaussian, self).__init__(d, scale)
assert d % 2 == 0
assert k <= d/2 - 1
d, k = int(d), int(k)
self.k = k
self.eps = eps
self.N = N
self.alpha = alpha
self.batch = batch
self.beta = self.scale / np.sqrt((d / 3.0 + 2.0 / 3.0) * (d - 2.0 * k) / d)
# the below tables are buffer, which stores the already computed certified radius
self.pAtable = dict()
self.rTable = dict()
def sample(self, batch_size):
dist = gamma(self.d / 2.0 - self.k)
r_sq = dist.rvs(batch_size)
r = np.sqrt(r_sq * (2.0 * self.beta**2))
v = sample_linfty_vec(self.d, batch_size)
v = r[:, np.newaxis] * v
return v
def mean_norm(self):
return self.beta * np.sqrt((self.d - 2.0 * self.k) * (self.d / 3.0 + 2.0 / 3.0))
def info(self):
return f'Linfty Gaussian distribution with scale {self.scale} and beta {self.beta}'
def _sampler_for_radius(self):
# sampler with compress
dist = gamma(self.d / 2.0 - self.k)
now_n = 0
ans = list()
while now_n < self.N:
now_batch_size = min(self.batch, self.N - now_n)
batch_rs = dist.rvs(now_batch_size)
batch_rs = self.beta * np.sqrt(2) * np.sqrt(batch_rs)
vec_samples = sample_linfty_vec(self.d, now_batch_size)
vec_samples = np.vstack([vec_samples.max(axis=1), vec_samples.min(axis=1)]).T
vec_samples = vec_samples * batch_rs[:, np.newaxis]
ans.append(vec_samples)
now_n += now_batch_size
ans = np.concatenate(ans)
return ans
def _relative_density(self, samps):
ans = np.linalg.norm(samps, ord=np.inf, axis=1)
ans = - (ans ** 2) / (2.0 * self.beta * self.beta) - 2.0 * self.k * np.log(ans)
return ans
def _binary_search_logK_MC(self, zip_p, r_mid, pA):
ps = self._relative_density(zip_p)
pshifts = self._relative_density(zip_p - np.array([r_mid, r_mid])[np.newaxis, :])
M = max(max(ps) - min(pshifts), min(ps) - max(pshifts)) + 1.
logK_l, logK_r = -M, +M
while logK_r - logK_l > self.eps:
logK_mid = (logK_l + logK_r) / 2.0
pmin, pnow = confint(np.sum(ps >= pshifts + logK_mid), self.N, self.alpha)
# print(f" [{logK_l}, {logK_r}] p [{pmin}, {pnow}]")
if pnow < pA:
logK_r = logK_mid
else:
logK_l = logK_mid
return logK_r
def _compute_with_shift(self, zip_p, r, logK):
ps = self._relative_density(zip_p)
pshifts = self._relative_density(zip_p + np.array([r, r])[np.newaxis, :])
ans, _ = confint(np.sum(pshifts >= ps + logK), self.N, self.alpha)
return ans
def certify_radius(self, pA):
if pA < 0.5:
return 0.0
key = int((pA - 0.5) * (1.0 / self.eps))
if abs(pA - self.pAtable.get(key, 0.0)) < self.eps:
# found
ans = self.rTable[key]
return ans
else:
# gaussian's radius provides a very large upper bound
r_lb, r_ub = 0.0, self.scale * norm.ppf(pA)
print(f'!!! pA={pA}')
zip_p = self._sampler_for_radius()
while r_ub - r_lb > self.eps:
# print(f'binary search r in [{r_lb}, {r_ub}]')
r_mid = (r_lb + r_ub) / 2.0
logK = self._binary_search_logK_MC(zip_p, r_mid, pA)
shifted_pA = self._compute_with_shift(zip_p, r_mid, logK)
if shifted_pA > 0.5:
r_lb = r_mid
else:
r_ub = r_mid
ans = r_lb
self.pAtable[key] = pA
self.rTable[key] = r_lb
return ans
class L1GeneralGaussian(Distribution):
"""
Linfty Gaussian
proc exp(-||x||_infty^2 / (2 beta^2))
"""
def __init__(self, d, k, scale, eps=1e-6, N=50000, alpha=0.001, batch=1000):
super(L1GeneralGaussian, self).__init__(d, scale)
assert d % 2 == 0
assert k <= d/2 - 1
d, k = int(d), int(k)
self.k = k
self.eps = eps
self.N = N
self.alpha = alpha
self.batch = batch
self.beta = self.scale * np.sqrt(self.d * (self.d + 1) / (2.0 * (self.d - 2.0 * self.k)))
# the below tables are buffer, which stores the already computed certified radius
self.pAtable = dict()
self.rTable = dict()
self.vec_samples = None
def sample(self, batch_size, cuda=False):
dist = gamma(self.d / 2.0 - self.k)
r_sq = dist.rvs(batch_size)
r = np.sqrt(r_sq * (2.0 * self.beta**2))
v = sample_l1_vec(self.d, batch_size, cuda)
if cuda is False:
v = r[:, np.newaxis] * v
else:
r = torch.tensor(r, dtype=torch.float32).cuda().reshape((batch_size, 1))
v = v * r
return v
def mean_norm(self):
return self.beta * np.sqrt(2.0 * (self.d - 2.0 * self.k) / (self.d + 1))
def info(self):
return f'L1 Gaussian distribution with scale {self.scale} and beta {self.beta}'
def _sampler_for_radius(self):
if self.vec_samples is None:
# sampler
dist = gamma(self.d / 2.0 - self.k)
now_n = 0
ans = list()
while now_n < self.N:
now_batch_size = min(self.batch, self.N - now_n)
batch_rs = dist.rvs(now_batch_size)
batch_rs = self.beta * np.sqrt(2) * np.sqrt(batch_rs)
vec_samples = sample_l1_vec(self.d, now_batch_size)
# vec_samples = np.vstack([vec_samples.max(axis=1), vec_samples.min(axis=1)]).T
vec_samples = vec_samples * batch_rs[:, np.newaxis]
ans.append(vec_samples)
now_n += now_batch_size
print(now_n)
ans = np.concatenate(ans)
self.vec_samples = ans
return self.vec_samples
def _relative_density(self, samps):
ans = np.linalg.norm(samps, ord=1, axis=1)
ans = - (ans ** 2) / (2.0 * self.beta * self.beta) - 2.0 * self.k * np.log(ans)
return ans
def _binary_search_logK_MC(self, samps, r_mid, pA):
ps = self._relative_density(samps)
pshifts = self._relative_density(samps - (np.ones(self.d) * r_mid)[np.newaxis, :])
M = max(max(ps) - min(pshifts), min(ps) - max(pshifts)) + 1.
logK_l, logK_r = -M, +M
while logK_r - logK_l > self.eps:
logK_mid = (logK_l + logK_r) / 2.0
pmin, pnow = confint(np.sum(ps >= pshifts + logK_mid), self.N, self.alpha)
# print(f" [{logK_l}, {logK_r}] p [{pmin}, {pnow}]")
if pnow < pA:
logK_r = logK_mid
else:
logK_l = logK_mid
return logK_r
def _compute_with_shift(self, samps, r, logK):
ps = self._relative_density(samps)
pshifts = self._relative_density(samps + (np.ones(self.d) * r)[np.newaxis, :])
ans, _ = confint(np.sum(pshifts >= ps + logK), self.N, self.alpha)
return ans
def certify_radius(self, pA):
if pA < 0.5:
return 0.0
key = int((pA - 0.5) * (1.0 / self.eps))
if abs(pA - self.pAtable.get(key, 0.0)) < self.eps:
# found
ans = self.rTable[key]
return ans
else:
# gaussian's radius provides a very large upper bound
r_lb, r_ub = 0.0, self.scale * norm.ppf(pA)
print(f'!!! pA={pA}')
zip_p = self._sampler_for_radius()
while r_ub - r_lb > self.eps:
print(f'binary search r in [{r_lb}, {r_ub}]')
r_mid = (r_lb + r_ub) / 2.0
logK = self._binary_search_logK_MC(zip_p, r_mid, pA)
shifted_pA = self._compute_with_shift(zip_p, r_mid, logK)
if shifted_pA > 0.5:
r_lb = r_mid
else:
r_ub = r_mid
ans = r_lb
self.pAtable[key] = pA
self.rTable[key] = r_lb
return ans
class MonteCarloStandardGaussian(Distribution):
"""
Linfty Gaussian
proc exp(-||x||_infty^2 / (2 beta^2))
"""
def __init__(self, d, scale, eps=1e-6, N=50000, alpha=0.001, batch=1000):
super(MonteCarloStandardGaussian, self).__init__(d, scale)
assert d % 2 == 0
d = int(d)
self.eps = eps
self.N = N
self.alpha = alpha
self.batch = batch
self.beta = self.scale
# the below tables are buffer, which stores the already computed certified radius
self.pAtable = dict()
self.rTable = dict()
def sample(self, batch_size):
v = norm.rvs(size=(batch_size, self.d)) * self.beta
return v
def mean_norm(self):
return self.beta * np.sqrt(self.d)
def info(self):
return f'L2 Gaussian distribution with scale {self.scale} and beta {self.beta}'
def _sampler_for_radius(self):
# sampler
now_n = 0
ans = list()
while now_n < self.N:
now_batch_size = min(self.batch, self.N - now_n)
vec_samples = self.sample(batch_size=now_batch_size)
ans.append(vec_samples)
now_n += now_batch_size
ans = np.concatenate(ans)
return ans
def _relative_density(self, samps):
ans = np.linalg.norm(samps, ord=2, axis=1)
ans = - (ans ** 2) / (2.0 * self.beta * self.beta) #- 2.0 * self.k * np.log(ans)
return ans
def _binary_search_logK_MC(self, samps, r_mid, pA):
ps = self._relative_density(samps)
pshifts = self._relative_density(samps - (np.ones(self.d) * r_mid)[np.newaxis, :])
M = max(max(ps) - min(pshifts), min(ps) - max(pshifts)) + 1.
logK_l, logK_r = -M, +M
while logK_r - logK_l > self.eps:
logK_mid = (logK_l + logK_r) / 2.0
pmin, pnow = confint(np.sum(ps >= pshifts + logK_mid), self.N, self.alpha)
# print(f" [{logK_l}, {logK_r}] p [{pmin}, {pnow}]")
if pnow < pA:
logK_r = logK_mid
else:
logK_l = logK_mid
return logK_r
def _compute_with_shift(self, samps, r, logK):
ps = self._relative_density(samps)
pshifts = self._relative_density(samps + (np.ones(self.d) * r)[np.newaxis, :])
ans, _ = confint(np.sum(pshifts >= ps + logK), self.N, self.alpha)
return ans
def certify_radius(self, pA):
if pA < 0.5:
return 0.0
key = int((pA - 0.5) * (1.0 / self.eps))
if abs(pA - self.pAtable.get(key, 0.0)) < self.eps:
# found
ans = self.rTable[key]
return ans
else:
# gaussian's radius provides a very large upper bound
r_lb, r_ub = 0.0, self.scale * norm.ppf(pA)
print(f'!!! pA={pA}')
zip_p = self._sampler_for_radius()
while r_ub - r_lb > self.eps:
print(f'binary search r in [{r_lb}, {r_ub}]')
r_mid = (r_lb + r_ub) / 2.0
logK = self._binary_search_logK_MC(zip_p, r_mid, pA)
shifted_pA = self._compute_with_shift(zip_p, r_mid, logK)
if shifted_pA > 0.5:
r_lb = r_mid
else:
r_ub = r_mid
ans = r_lb
self.pAtable[key] = pA
self.rTable[key] = r_lb
return ans
"""
below is just the correctness test script
"""
if __name__ == '__main__':
# times = 100
# # dist = StandardGaussian(d = 3072, scale = 0.5)
# # dist = GeneralGaussian(d = 3072, k = 1530, scale = 0.5)
# dist = LinftyGaussian(d = 3072, scale = 0.5)
# mean = dist.mean_norm()
# print(mean)
# delta = 0.
# for time in range(times):
# a = dist.sample(100)
# empirical_mean = empirical_mean_norm(a)
# print('emprcl', empirical_mean)
# delta += empirical_mean - mean
# delta /= times
# print('avg delta', delta)
#
# # a = sample_l2_vec(d=3, batch_size=5)
# # b = sample_linfty_vec(d=3, batch_size=5)
# # print(a)
# # print(b)
# # print(empirical_mean_norm(a))
# # print(empirical_mean_norm(b))
D = 3072
P = 0.99
# dist = LinftyGeneralGaussian(d=D, k=1510, scale=0.5)
# print(dist.certify_radius(P))
# dist = LinftyGeneralGaussian(d=D, k=1530, scale=0.5)
# print(dist.certify_radius(P))
dist = StandardGaussian(d=D, scale=0.5)
print(dist.certify_radius(P) / np.sqrt(D))
# dist = MonteCarloStandardGaussian(d=D, scale=0.5)
# print(dist.certify_radius(P))
# print(dist.certify_radius(P))
#
# dist = GeneralGaussian(d=D, k=1530, scale=0.5)
# print(dist.certify_radius(P))
# k=1530, P=0.99, scale=0.5, ans = 0.01365756751308004
# dist = L1GeneralGaussian(d=D, k=1530, scale=0.5)
# print(dist.certify_radius(P))
# k=1510, P=0.99, scale=0.5, ans = 0.014246600030091532
# dist = L1GeneralGaussian(d=D, k=1510, scale=0.5)
# print(dist.certify_radius(P))
# k=1510, P=0.995, scale=0.5, ans = 0.015839526509555158
dist = L1GeneralGaussian(d=D, k=1510, scale=0.5)
print(dist.certify_radius(0.995))
# k=1510, P=0.999, scale=0.5, ans = 0.01868666696103436
dist = L1GeneralGaussian(d=D, k=1510, scale=0.5)
print(dist.certify_radius(0.999))