-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdump_main_results.py
432 lines (372 loc) · 19.3 KB
/
dump_main_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# This can nly print mnist and cifar 10 results
import os
import sys
from utils import read_orig_Rs
import numpy as np
import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
from matplotlib import pyplot as plt
new_radius_dir = 'data/new-radius'
orig_radius_dir = 'data/orig-radius'
# place to store the output human-friendly or TeX-friendly tables and figures
result_folder = 'result_st'
def read_improved_radius(model, disttype, k, sigma, betas, N, alpha, print_detail=False):
orig_disttype = disttype[:-3] if disttype.endswith('-th') else disttype
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{orig_disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] + [None for _ in betas] for item in raw_orig_Rs]
slot_idx = dict([(item[0], i) for i, item in enumerate(slots)])
for beta_i, beta in enumerate(betas):
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
with open(os.path.join(new_radius_dir, model, fname), 'r') as f:
for line in f.readlines():
line = line.strip()
line_fields = line.split(' ')
no, new_r = int(line_fields[0]), float(line_fields[1])
slots[slot_idx[no]][2 + beta_i] = new_r
arr = np.array(slots)[:, 1:]
arr = arr[np.argsort(arr[:, 0])]
if print_detail:
counter = [0 for _ in betas + [None]]
for item in arr:
if max(item) - item[0] >= 1e-6:
counter = [counter[i] + 1 if max(item) - item[i] <= 1e-6 else counter[i] for i in range(len(item))]
# for item in arr:
# print(np.array_repr(item).replace('\n', ''))
print(['Orig'] + betas)
print(counter)
return arr.max(axis=1)
def read_original_radius(model, disttype, k, sigma, N, alpha):
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] for item in raw_orig_Rs]
arr = np.array(slots)[:, 1]
arr.sort()
return arr
def read_original_acr(model, disttype, k, sigma, N, alpha):
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] for item in raw_orig_Rs]
ans = np.mean(np.array(slots)[:, 1])
return ans
def read_improved_acr(model, disttype, k, sigma, betas, N, alpha, print_detail=False):
orig_disttype = disttype[:-3] if disttype.endswith('-th') else disttype
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{orig_disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] + [None for _ in betas] for item in raw_orig_Rs]
slot_idx = dict([(item[0], i) for i, item in enumerate(slots)])
for beta_i, beta in enumerate(betas):
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
with open(os.path.join(new_radius_dir, model, fname), 'r') as f:
for line in f.readlines():
line = line.strip()
line_fields = line.split(' ')
no, new_r = int(line_fields[0]), float(line_fields[1])
slots[slot_idx[no]][2 + beta_i] = new_r
arr = np.array(slots)[:, 1:]
arr = arr.max(axis=1)
ans = np.mean(slots)
return ans
def plot_original_curve(model, disttype, k, sigma, N, alpha):
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] for item in raw_orig_Rs]
rads = np.sort(np.array(slots)[:, 1])
tot = len(slots)
rads = rads[rads >= 1e-6]
x = (rads).tolist()
y = list(np.array(range(len(rads)-1, -1, -1)) / tot)
return x, y
def plot_improved_curve(model, disttype, k, sigma, betas, N, alpha, print_detail=False):
orig_disttype = disttype[:-3] if disttype.endswith('-th') else disttype
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{orig_disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] + [None for _ in betas] for item in raw_orig_Rs]
slot_idx = dict([(item[0], i) for i, item in enumerate(slots)])
for beta_i, beta in enumerate(betas):
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
with open(os.path.join(new_radius_dir, model, fname), 'r') as f:
for line in f.readlines():
line = line.strip()
line_fields = line.split(' ')
no, new_r = int(line_fields[0]), float(line_fields[1])
slots[slot_idx[no]][2 + beta_i] = new_r
arr = np.array(slots)[:, 1:]
arr = arr.max(axis=1)
rads = np.sort(arr)
tot = len(rads)
rads = rads[rads >= 1e-6]
x = (rads).tolist()
y = list(np.array(range(len(rads)-1, -1, -1)) / tot)
return x, y
def plot_original_curve_series(models, disttype, k, sigmas, N, alpha):
xs = dict()
ys = dict()
for model, sigma in zip(models, sigmas):
raw_orig_Rs = read_orig_Rs(os.path.join(orig_radius_dir, model, f'orig-rad-{disttype}-{k}-{sigma}-{N}-{alpha}.txt'),
[])
slots = [[item[0], item[1]] for item in raw_orig_Rs]
rads = np.sort(np.array(slots)[:, 1])
tot = len(slots)
rads = rads[rads >= 1e-6]
xs[sigma] = (rads).tolist()
ys[sigma] = list(np.array(range(len(rads)-1, -1, -1)) / tot)
all_x = list()
all_y = list()
for sigma in sigmas:
all_x += xs[sigma]
all_x = sorted(list(set(all_x)))
pointers = dict()
for sigma in sigmas:
pointers[sigma] = 0
for x in all_x:
now_y = 0.
for sigma in sigmas:
while pointers[sigma] < len(xs[sigma]) - 1 and xs[sigma][pointers[sigma] + 1] <= x:
pointers[sigma] += 1
if x - xs[sigma][pointers[sigma]] < 1e-6:
now_y = max(now_y, ys[sigma][pointers[sigma]])
else:
# x - xs[sigma][pointers[sigma]] >= 1e-6:
now_y = max(now_y, ys[sigma][pointers[sigma]] - 1. / tot)
all_y.append(now_y)
return all_x, all_y
def plot_improved_curve_series(models, disttype, k, sigmas, betas, N, alpha, print_detail=False):
xs = dict()
ys = dict()
for model, sigma, beta in zip(models, sigmas, betas):
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
with open(os.path.join(new_radius_dir, model, fname), 'r') as f:
slots = list()
for line in f.readlines():
line = line.strip()
line_fields = line.split(' ')
no, new_r = int(line_fields[0]), float(line_fields[1])
slots.append([no, new_r])
rads = np.sort(np.array(slots)[:, 1])
tot = len(slots)
rads = rads[rads >= 1e-6]
xs[sigma] = (rads).tolist()
ys[sigma] = list(np.array(range(len(rads)-1, -1, -1)) / tot)
all_x = list()
all_y = list()
for sigma in sigmas:
all_x += xs[sigma]
all_x = sorted(list(set(all_x)))
pointers = dict()
for sigma in sigmas:
pointers[sigma] = 0
for x in all_x:
now_y = 0.
for sigma in sigmas:
while pointers[sigma] < len(xs[sigma]) - 1 and xs[sigma][pointers[sigma] + 1] <= x:
pointers[sigma] += 1
if x - xs[sigma][pointers[sigma]] < 1e-6:
now_y = max(now_y, ys[sigma][pointers[sigma]])
else:
# x - xs[sigma][pointers[sigma]] >= 1e-6:
now_y = max(now_y, ys[sigma][pointers[sigma]] - 1. / tot)
all_y.append(now_y)
return all_x, all_y
def nice_print(arr, unit=0.05, infty=False, prefix=' ', pre_decorater='$', suf_decorator='\\%$ &'):
# for console print
pre_decorater = ''
suf_decorator = '%'
#
max_u = 0.
while sum(arr >= max_u - 1e-5) > 0:
max_u += unit
max_u -= unit
tot = len(arr)
# print(f'tot = {tot}')
line_1 = ''.join(['R \t'] + [f'{unit * i if not infty else unit * i * 255.: .2f}\t' for i in range(int(max_u / unit) + 1)])
line_2 = ''.join(['RAcc\t'] + [prefix + f'{pre_decorater}{sum(arr >= unit * i - 1e-5) / tot * 100.:.1f}{suf_decorator}\t' for i in range(int(max_u / unit) + 1)])
print(line_1)
print(line_2)
print(f'avg ACR = {np.mean(arr):.3f}')
class Unbuffered():
def __init__(self, stream, filestream):
self.stream = stream
self.file_stream = filestream
def write(self, data):
self.stream.write(data)
self.stream.flush()
self.file_stream.write(data) # Write the data of stdout here to a text file as well
def flush(self):
# this flush method is needed for python 3 compatibility.
# this handles the flush command by doing nothing.
# you might want to specify some extra behavior here.
pass
def dataset_level_print(ds_print_name, ds_internal_name, train_print_name, train_internal_name, k, N, Qsigmas,
standard_stdout):
now_f_out = open(result_folder + f'/{ds_print_name}_{train_print_name}.txt', 'w')
sys.stdout = Unbuffered(standard_stdout, now_f_out)
epoches=150
if ds_internal_name == "mnist" and train_internal_name == "smoothmix":
epoches = 90
lr="001"
if ds_internal_name == "cifar10" and train_internal_name == "smoothmix":
lr = "01"
print('R: radius, RAcc: certified accuracy')
print(' Note: for R=0.00, we report the benign accuracy in the paper instead of 100.0%.\n'
' The benign accuracy can be obtained by running benign_sampler.py\n'
'')
print('*' * 5, f'Results on {ds_print_name} with {train_print_name}:', '*' * 5)
print(f'Smoothing distribution: generalized Gaussian with k = {k}, sigma = 0.25')
model = f'{ds_internal_name}_quarter_{train_internal_name}_{epoches}_{lr}_st'
sigma = 0.25
print('Neyman-Pearson certification')
nice_print(read_original_radius(model, 'gaussian', k, sigma, N, 0.001), unit=0.25)
print('DSRS Certification')
nice_print(read_improved_radius(model, 'gaussian' + ('-th' if ds_internal_name == 'imagenet' else ''), k, sigma, [Qsigmas[0]], N//2, 0.0005), unit=0.25)
#dataset_level_print('MNIST', 'mnist', 'Consistency', 'consistency', 380, N, [0.2, 0.4, 0.8],
print('')
print(f'Smoothing distribution: generalized Gaussian with k = {k}, sigma = 0.50')
model = f'{ds_internal_name}_half_{train_internal_name}_{epoches}_{lr}_st'
sigma = 0.50
print('Neyman-Pearson certification')
nice_print(read_original_radius(model, 'gaussian', k, sigma, N, 0.001), unit=0.25)
print('DSRS Certification')
nice_print(read_improved_radius(model, 'gaussian' + ('-th' if ds_internal_name == 'imagenet' else ''), k, sigma, [Qsigmas[1]], N//2, 0.0005), unit=0.25)
print('')
print(f'Smoothing distribution: generalized Gaussian with k = {k}, sigma = 1.00')
model = f'{ds_internal_name}_one_{train_internal_name}_{epoches}_{lr}_st'
sigma = 1.00
print('Neyman-Pearson certification')
nice_print(read_original_radius(model, 'gaussian', k, sigma, N, 0.001), unit=0.25)
print('DSRS Certification')
nice_print(read_improved_radius(model, 'gaussian' + ('-th' if ds_internal_name == 'imagenet' else ''), k, sigma, [Qsigmas[2]], N//2, 0.0005), unit=0.25)
now_f_out.close()
sys.stdout = standard_stdout
if __name__ == '__main__':
np.set_printoptions(precision=4)
if not os.path.exists(result_folder):
os.makedirs(result_folder)
# generic options
N = 100000
alpha = 0.0005
disttype = 'general-gaussian'
""" Script for Figure 2(a) is ablation/less_ideal_sigma.py """
""" Figure 2(b) """
'''
print('Output Figure 2(b)...')
model = 'salman-imagenet-0.50.pth'
k = 75260
sigma = 0.5
plt.clf()
plt.style.use('seaborn-v0_8')
# plt.figure(figsize=(3.6, 3.6))
# plt.subplots_adjust(left=0.165, bottom=0.3, right=0.99, top=0.88, wspace=0, hspace=0)
plt.figure(figsize=(8,3.3))
plt.subplots_adjust(left=0.08, bottom=0.13, right=0.99, top=0.90, wspace=0, hspace=0)
plt.ylabel('Certified Accuracy', fontsize=14)
plt.xlabel('$r$', fontsize=14)
# x, y = plot_original_curve(model, 'gaussian', None, sigma, N, 0.001)
# plt.plot(x, y, label='Neyman-Pearson Standard Gaussian')
x, y = plot_original_curve(model, 'general-gaussian', k, sigma, N//2, 0.001)
plt.plot(x, y, label='Neyman-Pearson ($N=50000$)')
x, y = plot_original_curve(model, 'general-gaussian', k, sigma, N, 0.001)
plt.plot(x, y, label='Neyman-Pearson ($N=100000$)')
x, y = plot_original_curve(model, 'general-gaussian', k, sigma, N*2, 0.001)
plt.plot(x, y, label='Neyman-Pearson ($N=200000$)')
x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N//2, 0.0005)
plt.plot(x, y, '--', label='DSRS ($N=50000+50000$)')
x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N, 0.0005)
plt.plot(x, y, '--', label='DSRS ($N=50000+100000$)')
x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N*2, 0.0005)
plt.plot(x, y, '--', label='DSRS ($N=50000+200000$)')
x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N*4, 0.0005)
plt.plot(x, y, '--', label='DSRS ($N=50000+400000$)')
x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N*8, 0.0005)
plt.plot(x, y, '--', label='DSRS ($N=50000+800000$)')
# x, y = plot_improved_curve(model, 'general-gaussian-th', k, sigma, ['x2'], N*8, 0.005)
# plt.plot(x, y, label='DSRS General Gaussian ($N=800000$, $\\alpha=0.01$)')
# plt.legend(bbox_to_anchor=(-0.2,-0.2), loc="upper left", ncol=2, fontsize='x-small')
# plt.title('ImageNet, smoothadv model from\n (Salmen et al., 2019), $\sigma$=0.50')
plt.title('ImageNet, smoothadv model from (Salmen et al., 2019), $\sigma$=0.50', fontsize=16)
plt.xlim([0,2.4])
plt.legend()
plt.savefig(result_folder + '/figure_2b.pdf')
print('=' * 20)
'''
""" Cache oldstdout """
standard_stdout = sys.stdout
""" Output main tables """
""" Note: the same table is outputted to both stdout and corresponding named txts in results/ folder """
""" Note: Table 2 in the paper takes the maximum certified accuracy across all three P sigma's, so it is the maximum cell among three corresponding tables respectively. """
""" Note: the accuracy when radius = 0.0 in the paper corresponds to the benign accuracy, which needs to be obtained via benign_sampler.py """
""" Note: the result for sigma = 1.00 is used to generate Table 9 """
'''
print(""">>>>> Table 2 and Table 6 - MNIST - Gaussian Augmentation """)
dataset_level_print('MNIST', 'mnist', 'Gaussian Augmentation', 'gaussian', 380, N, [0.2, 0.4, 0.8],
standard_stdout)
print(""">>>>> Table 2 and Table 6 - MNIST - Consistency """)
dataset_level_print('MNIST', 'mnist', 'Consistency', 'consistency', 380, N, [0.2, 0.4, 0.8],
standard_stdout)
print(""">>>>> Table 2 and Table 6 - MNIST - SmoothMix """)
dataset_level_print('MNIST', 'mnist', 'SmoothMix', 'smoothmix', 380, N, [0.2, 0.4, 0.8],
standard_stdout)
'''
print(""">>>>> Table 2 and Table 7 - CIFAR10 - Gaussian Augmentation """)
dataset_level_print('CIFAR10', 'cifar10', 'Gaussian Augmentation', 'gaussian', None, N, [0.2, 0.4, 0.8],
standard_stdout)
print(""">>>>> Table 2 and Table 7 - CIFAR10 - Consistency """)
dataset_level_print('CIFAR10', 'cifar10', 'Consistency', 'consistency', None, N, [0.2, 0.4, 0.8],
standard_stdout)
print(""">>>>> Table 2 and Table 7 - CIFAR10 - SmoothMix """)
dataset_level_print('CIFAR10', 'cifar10', 'SmoothMix', 'smoothmix', None, N, [0.2, 0.4, 0.8],
standard_stdout)
'''
print(""">>>>> Table 2 and Table 8 - ImageNet - Gaussian Augmentation """)
dataset_level_print('ImageNet', 'imagenet', 'Gaussian Augmentation', 'gaussian', 75260, N, ['x+', 'x+', 'x+'],
standard_stdout)
print(""">>>>> Table 2 and Table 8 - ImageNet - Consistency """)
dataset_level_print('ImageNet', 'imagenet', 'Consistency', 'consistency', 75260, N, ['x+', 'x+', 'x+'],
standard_stdout)
print(""">>>>> Table 2 and Table 8 - ImageNet - SmoothMix """)
dataset_level_print('ImageNet', 'imagenet', 'SmoothMix', 'smoothmix', 75260, N, ['x+', 'x+', 'x+'],
standard_stdout)
'''
""" Output result figure: Figure 8 in the paper """
'''
dataset_internal_names = ['mnist', 'cifar', 'imagenet']
dataset_print_names = ['MNIST', 'CIFAR10', 'ImageNet']
train_method_internal_names = ['cohen', 'consistency', 'smoothmix']
train_method_print_names = ['Gaussian Augmentation', 'Consistency', 'SmoothMix']
ks = [380, 1530, 75260]
sigmas = [0.25, 0.50, 1.00]
Qsigmas = [0.2, 0.4, 0.8]
N = 100000
for ds_indexer in range(3):
for train_indexer in range(3):
print(f' Figure 8 [{ds_indexer + 1}, {train_indexer + 1}] -> result/{dataset_print_names[ds_indexer]}, {train_method_print_names[train_indexer]}.pdf')
k = ks[ds_indexer]
plt.clf()
plt.style.use('seaborn')
plt.figure(figsize=(4,3))
plt.subplots_adjust(left=0.13, bottom=0.15, right=0.97, top=0.90, wspace=0, hspace=0)
plt.ylabel('Certified Accuracy')
plt.xlabel('Radius $r$')
x, y = plot_original_curve_series(
[f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-0.25.pth',
f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-0.50.pth',
f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-1.00.pth'],
'general-gaussian', k, [0.25, 0.50, 1.00], N, 0.0010)
plt.plot(x, y, label='Neyman-Pearson Certification')
x, y = plot_improved_curve_series(
[f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-0.25.pth',
f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-0.50.pth',
f'{train_method_internal_names[train_indexer]}-{dataset_internal_names[ds_indexer]}-{k}-1.00.pth'],
'general-gaussian' + ('-th' if dataset_internal_names[ds_indexer] == 'imagenet' else ''),
k,
[0.25, 0.50, 1.00],
['x+', 'x+', 'x+'] if dataset_internal_names[ds_indexer] == 'imagenet' else Qsigmas, N//2, 0.0005)
plt.xlim([0.0, 3.0])
plt.plot(x, y, label='DSRS Certification')
plt.legend()
plt.title(f'{dataset_print_names[ds_indexer]}, {train_method_print_names[train_indexer]}')
plt.savefig(f'result/{dataset_print_names[ds_indexer]}, {train_method_print_names[train_indexer]}.pdf')
plt.savefig(f'figures/{dataset_internal_names[ds_indexer]}_{train_method_internal_names[train_indexer]}.pdf')
'''
print('Done! All result saved to result/ folder')