forked from intel/Financial-Services-Workload-Samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
98 lines (70 loc) · 7.63 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Financial Services Workload Samples:
====================================
Most FSI applications are deployed in a multi-process (one process per core) environment. So, all the workloads in this sample will execute in Multi-processes/Instances mode. Each process will execute a single thread and inter-process communication and resources sharing between the threads won't exist while working on separate instruments (i.e. Options). In the package the compilation will build AVX512 binaries from source code. The Intel C++ Compiler is needed to compile the sources.
Black Scholes Options Pricing:
=============================
Black Scholes is a popular mathematical model used in finance for European options valuation. This is a double precision version. This benchmark prices call and put options using the Black Scholes formula. A large set of options are fed via an input array and results are written into call and put arrays. An exp function is used for simulating the Cumulative Normal Distribution (CND). This is a compute-bound, double precision workload and benefits from Turbo. It runs on Physical cores (HT can be turned off).
Binomial Options Pricing:
========================
Binomial Options Pricing is a lattice-based approach (Cox, Ross and Rubenstein method) that uses a discrete-time model of the varying price over time of the underlying financial instrument (a European call option). At every time step, the value of stock “S” can either go up by uS or go down by “vS” (0<v<1<u). The values of “u” and “v” are constant for every time step. This is a compute-bound, double precision workload and benefits from Turbo and SMT. Run it in HT ON mode (runs on both Physical and Logical (HT) cores).
Monte Carlo Options Pricing:
===========================
Monte Carlo European options is a numerical method that uses statistical sampling techniques to approximate solutions to quantitative problems. In Computational Finance, Monte Carlo algorithms are used to calculate the value of an option with multiple sources of uncertainties and random features, such as changing interest rates, stock prices or exchange rates, etc. to evaluate complex instruments, portfolios, and investments. This is a compute-bound, double precision workload and benefits from Turbo and SMT. Run it in HT ON mode (runs on both Physical and Logical (HT) cores).
Example Run:
============
[user@SUT FSI_SAMPEL_WORKLOADS] # ls
BinomialOptions BlackScholes MonteCarloEuropeanOptions
[user@SUT FSI_SAMPEL_WORKLOADS]# cd MonteCarloEuropeanOptions
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]# ls
Makefile MonteCarloInsideBlockingDP.cpp MPTest REDME.txt
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]# ls MPTest
clean.sh getresults.sh runbatch.sh
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#source /opt/intel/compilers_and_libraries_........../linux/bin/compilervars.sh intel64
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#export PR="Number OF Cores in the system reported by lscpu"
//Put numerical value of the cores count showed by #lscpu for Binomial and Monte Carlo with HT ON state. For Black Scholes if HT is OFF then PR will same as total cores number reported by #lscpu command otherwise it will be 50% of the of total cores count shows by #lscpu command with HT ON state.
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#make
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#ls
Makefile MonteCarloInsideBlockingDP.avx512 MonteCarloInsideBlockingDP.cpp MonteCarloInsideBlockingDP.optrpt MPTest REDME.txt
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#cp MonteCarloInsideBlockingDP.avx512 MPTest
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#cd MPTest
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#ls MPTEST
clean.sh getresults.sh MonteCarloInsideBlockingDP.avx512 runbatch.sh
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#./runbatch.sh MonteCarloInsideBlockingDP.avx512
// Need to make sure with #top command to confirm that all the instances(processes) started and completed.
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]# top
top - 14:04:25 up 3 days, 1:26, 3 users, load average: 4.57, 1.01, 0.47
Tasks: 996 total, 97 running, 899 sleeping, 0 stopped, 0 zombie
%Cpu(s): 99.8 us, 0.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 19651051+total, 18213664+free, 2937204 used, 11436676 buff/cache
KiB Swap: 65535996 total, 65535996 free, 0 used. 19252812+avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
303188 root 20 0 34948 3048 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303189 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303190 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303191 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.87 MonteCarloInsid
303192 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303193 root 20 0 34948 3048 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303194 root 20 0 34948 3048 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303195 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303196 root 20 0 34948 3048 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303197 root 20 0 34948 3048 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
303198 root 20 0 34948 3052 1892 R 87.5 0.0 0:04.88 MonteCarloInsid
//Getting results: invoke getresult.sh script passing with result file name. All data will be dumped in the file and main result will be displayed (execution time in sec)
[root@SUT FSI_SAMPEL_WORKLOADS MPTest]# ./getresults.sh result
7.00145
// The time is the average time to take all instances of the workload (MonteCarlo..) to be completed
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#ls
clean.sh inst12 inst18 inst23 inst29 inst34 inst4 inst45 inst50 inst56 inst61 inst67 inst72 inst78 inst83 inst89 inst94
getresults.sh inst13 inst19 inst24 inst3 inst35 inst40 inst46 inst51 inst57 inst62 inst68 inst73 inst79 inst84 inst9 inst95
inst0 inst14 inst2 inst25 inst30 inst36 inst41 inst47 inst52 inst58 inst63 inst69 inst74 inst8 inst85 inst90 MonteCarloInsideBlockingDP.avx512
inst1 inst15 inst20 inst26 inst31 inst37 inst42 inst48 inst53 inst59 inst64 inst7 inst75 inst80 inst86 inst91 result.txt
inst10 inst16 inst21 inst27 inst32 inst38 inst43 inst49 inst54 inst6 inst65 inst70 inst76 inst81 inst87 inst92 runbatch.sh
inst11 inst17 inst22 inst28 inst33 inst39 inst44 inst5 inst55 inst60 inst66 inst71 inst77 inst82 inst88 inst93
[user@SUT FSI_SAMPEL_WORKLOADS MonteCarloEuropeanOptions]#
Calculation of the performances: Number of options*Number of processes/ Average Time( reported on the screen via running getresults.sh. Unit: Options/sec
Monte Carlo European Options Throughput =Total Number of Options/Average Time needs to complete all processes
= (Number of Options * NLoops(Iteration)*Nprocesses) / Time" getresult.sh calculates average time to complete all processes to complete
Binomial Options Throughput =Total Number of Options/Average Time needs to complete all processes
= (Number of Options * NLoops(Iteration)*Nprocesses) / Time" getresult.sh calculates average time to complete all processes to complete
Black Scholes Throughput =Total Number of Options/Average Time needs to complete all processes
= (Number of Options * Nloops(Iteration)*Nprocesses) / Time" getresult.sh calculates average time to complete all processes to complete