-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanni.h
275 lines (234 loc) · 9.23 KB
/
anni.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#ifndef _ANNI_H_
#define _ANNI_H_
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
typedef enum { false, true } bool;
typedef struct {
size_t input_size;
size_t output_size;
size_t samples;
size_t container_size;
size_t stride;
float* data;
} Trainingset;
typedef struct {
size_t size;
size_t stride;
size_t samples;
float* data;
} DataContainer;
typedef struct {
size_t topology_size;
size_t weights_size;
size_t bias_size;
size_t neurons_size;
size_t* topology;
float* weights;
float* bias;
float* neurons;
} NeuralNetwork;
#define BUFFERSIZE 512
#define GET_CONTAINER_SIZE(container) sizeof((container))/sizeof((container)[0])
void load_training_file(Trainingset* trainingset, const char* filename);
void print_trainingset(Trainingset trainingset);
void free_trainingset(Trainingset trainingset);
void get_inputs_from_trainingset(DataContainer* container, Trainingset trainingset);
void get_outputs_from_trainingset(DataContainer* container, Trainingset trainingset);
void free_container(DataContainer container);
void print_container(DataContainer container);
void initialize_model(NeuralNetwork* model, size_t* topology, size_t topology_size);
void print_model(NeuralNetwork model);
void free_model(NeuralNetwork model);
float randomize(float range_min, float range_max);
float sigmoid(float x);
void feed_forward(NeuralNetwork* model);
float mean_square_error(NeuralNetwork model, DataContainer inputs, DataContainer outputs);
float finite_difference(NeuralNetwork model, float epsilon, float learningrate);
#endif
#ifdef ANNI_IMPLEMENTATION
void load_training_file(Trainingset* trainingset, const char* filename){
FILE* file = fopen(filename, "r");
char buffer[BUFFERSIZE];
bool data_is_active = false;
size_t data_counter = 0;
char* token = "";
if(!file){
printf("Unable to open file \"%s\".\n", filename);
exit(1);
}
while(fgets(buffer, BUFFERSIZE, file) != NULL) {
// skip commenset in file
if(buffer[0] == '#') continue;
// save values of input, output and samples to trainingset struct
sscanf(buffer, "input %zu\n", &trainingset->input_size);
sscanf(buffer, "output %zu\n", &trainingset->output_size);
sscanf(buffer, "samples %zu\n", &trainingset->samples);
// save data given by file into the trainingset struct
if(data_is_active && data_counter < trainingset->samples){
token = strtok(buffer, ",");
trainingset->data[data_counter * trainingset->stride] = (float)atof(token);
for(size_t i = 1; i < trainingset->stride; ++i){
trainingset->data[data_counter * trainingset->stride + i] = (float)atof(strtok(NULL, ","));
}
data_counter+=1;
}
// toggle data flag and calculate rest of control values
if(strcmp(buffer, "data\n") == 0){
data_is_active = true;
trainingset->stride = trainingset->input_size + trainingset->output_size;
trainingset->container_size = trainingset->stride * trainingset->samples;
trainingset->data = malloc(sizeof(float) * trainingset->container_size);
}
}
fclose(file);
}
void print_trainingset(Trainingset trainingset){
printf("Trainingset:\n");
printf("---------------\n");
for(size_t i = 0; i < trainingset.container_size; ++i){
if(i % trainingset.stride == 0 && i != 0) printf("\n");
printf("%f ", trainingset.data[i]);
}
printf("\n---------------\n");
}
void free_trainingset(Trainingset trainingset){
free(trainingset.data);
}
void get_inputs_from_trainingset(DataContainer* container, Trainingset trainingset){
container->size = trainingset.samples * trainingset.input_size;
container->stride = trainingset.input_size;
container->samples = trainingset.samples;
container->data = malloc(sizeof(float) * container->size);
for(size_t i = 0; i < trainingset.samples; ++i)
for(size_t j = 0; j < trainingset.input_size; ++j)
container->data[i*container->stride+j] = trainingset.data[i*trainingset.stride+j];
}
void get_outputs_from_trainingset(DataContainer* container, Trainingset trainingset){
container->size = trainingset.samples * trainingset.output_size;
container->stride = trainingset.output_size;
container->samples = trainingset.samples;
container->data = malloc(sizeof(float) * container->size);
for(size_t i = 0; i < trainingset.samples; ++i)
for(size_t j = trainingset.input_size; j < (trainingset.input_size+trainingset.output_size); ++j)
container->data[i * container->stride + (j - trainingset.input_size)] = trainingset.data[i*trainingset.stride+j];
}
void print_container(DataContainer container){
printf("Container:\n");
for(size_t i = 0; i < container.samples; ++i){
for(size_t j = 0; j < container.stride; ++j){
printf("%f ", container.data[i*container.stride+j]);
}
printf("\n");
}
}
void free_container(DataContainer container){
free(container.data);
}
void initialize_model(NeuralNetwork* model, size_t* topology, size_t topology_size){
model->topology_size = topology_size;
model->topology = malloc(sizeof(size_t) * model->topology_size);
for(size_t i = 0; i < model->topology_size; ++i)
model->topology[i] = topology[i];
model->weights_size = 0;
for(size_t i = 0; i < model->topology_size - 1; ++i)
model->weights_size += model->topology[i] * model->topology[i+1];
model->weights = malloc(sizeof(float) * model->weights_size);
for(size_t i = 0; i < model->weights_size; ++i)
model->weights[i] = randomize(0.0f, 1.0f);
model->bias_size = model->topology_size - 1;
model->bias = malloc(sizeof(float) * model->bias_size);
for(size_t i = 0; i < model->bias_size; ++i)
model->bias[i] = randomize(0.0f, 1.0f);
model->neurons_size = 0;
for(size_t i = 0; i < model->topology_size; ++i)
model->neurons_size += model->topology[i];
model->neurons = malloc(sizeof(float) * model->neurons_size);
for(size_t i = 0; i < model->neurons_size; ++i)
model->neurons[i] = 0.0f;
}
void print_model(NeuralNetwork model){
printf("# model\n");
printf("topology_size %zu\n", model.topology_size);
printf("weights_size %zu\n", model.weights_size);
printf("bias_size %zu\n", model.bias_size);
printf("topology ");
for(size_t i = 0; i < model.topology_size; ++i)
printf("%zu ", model.topology[i]);
printf("\n");
printf("weights ");
for(size_t i = 0; i < model.weights_size; ++i)
printf("%f ", model.weights[i]);
printf("\n");
printf("bias ");
for(size_t i = 0; i < model.bias_size; ++i)
printf("%f ", model.bias[i]);
printf("\n");
printf("neurons ");
for(size_t i = 0; i < model.neurons_size; ++i)
printf("%f ", model.neurons[i]);
printf("\n");
}
void free_model(NeuralNetwork model){
free(model.topology);
free(model.weights);
free(model.bias);
free(model.neurons);
}
float randomize(float range_min, float range_max){
return (float)rand() / (float)RAND_MAX * (range_max - range_min) + range_min;
}
float sigmoid(float x){
return 1.0f/(1.0f + expf(-x));
}
void feed_forward(NeuralNetwork* model){
size_t neuron_stride = 0;
size_t weight_stride = 0;
size_t layer_stride = model->topology[0];
// creates two work matrices each step iterating through topology
for(size_t i = 0; i < model->topology_size - 1; ++i){
float work_matrix_1[model->topology[i]];
float work_matrix_2[model->topology[i] * model->topology[i+1]];
// populate matrices
for(size_t j = neuron_stride; j < neuron_stride + model->topology[i]; ++j)
work_matrix_1[j - neuron_stride] = model->neurons[j];
for(size_t j = weight_stride; j < weight_stride + model->topology[i] * model->topology[i+1]; ++j)
work_matrix_2[j-weight_stride] = model->weights[j];
// feed forward
size_t next_row = 0;
for(size_t j = 0; j < model->topology[i + 1]; ++j){
for(size_t k = 0; k < model->topology[i]; ++k)
model->neurons[layer_stride + j] += work_matrix_1[k] * work_matrix_2[next_row + k]; // multiply matrices
model->neurons[layer_stride + j] += model->bias[i]; // add bias to neuron
model->neurons[layer_stride + j] = sigmoid(model->neurons[layer_stride + j]); // modify neuron with sigmoid activation function
next_row += model->topology[i];
}
// stride increments
neuron_stride += model->topology[i];
weight_stride += model->topology[i] * model->topology[i + 1];
layer_stride += model->topology[i+1];
}
}
float mean_square_error(NeuralNetwork model, DataContainer input, DataContainer output){
size_t output_offset = model.neurons_size - model.topology[model.topology_size - 1];
float error = 0.0f;
for(size_t i = 0; i < input.samples; ++i){
// step 1: put inputs in network
for(size_t j = 0; j < input.stride; ++j)
model.neurons[j] = input.data[i*input.stride + j];
// step 2: compute all neurons and thus outputs
feed_forward(&model);
// step 3: accumulate error for every output neuron and each trainingset
for(size_t j = 0; j < output.stride; ++j)
error += pow(model.neurons[output_offset + j] - output.data[i*output.stride + j], 2);
}
return error/output.samples;
}
float finite_difference(NeuralNetwork model, float epsilon, float learningrate){
(void) model;
(void) epsilon;
(void) learningrate;
return 0.0f;
}
#endif