-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathREADME.Rmd
executable file
·60 lines (42 loc) · 2.5 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
title: "dynwrap: Representing and Inferring Single-Cell Trajectories"
output:
github_document:
html_preview: false
editor_options:
chunk_output_type: console
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE, message = FALSE, error = FALSE, warning = FALSE}
library(tidyverse)
```
<!-- badges: start -->
[![R-CMD-check](https://github.com/dynverse/dynwrap/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/dynverse/dynwrap/actions/workflows/R-CMD-check.yaml)
[![Codecov test coverage](https://codecov.io/gh/dynverse/dynwrap/branch/master/graph/badge.svg)](https://app.codecov.io/gh/dynverse/dynwrap?branch=master)
[**Tutorials**](https://dynverse.org)
[**Reference documentation**](https://dynverse.org/reference/dynwrap/)
<!-- badges: end -->
<img src="man/figures/logo.png" align="right" />
**dynwrap** contains the code for a common model of single-cell trajectories. The package can:
* Wrap the input data of a trajectory inference method, such as expression and prior information
* Run a trajectory inference method in R, in a docker container or a singularity container
* Wrap the output of a trajectory inference method, such as the pseudotime, a clustering or a branch network, and convert it into a common trajectory model
* Further postprocess and adapt the trajectory model, such as labelling the milestones and rooting the trajectory
![](man/figures/trajectory_model.png)
Documentation and the API reference for dynwrap can be found at the dyvnerse documentation website: https://dynverse.org/ .
dynwrap was used to wrap 50+ trajectory inference method within docker containers in [dynmethods](https://github.com/dynverse/dynmethods).
![](man/figures/overview_wrapping_v3.png)
The advantage of using a common model is that it allows:
* Comparison between a prediction and a gold standard, eg. using [dyneval](https://github.com/dynverse/dyneval)
* Comparing two predictions
* Easily visualise the trajectory, eg. using [dynplot](https://github.com/dynverse/dynplot)
* Extracting relevant features/genes, eg. using [dynfeature](https://github.com/dynverse/dynfeature)
## Latest changes
Check out `news(package = "dynwrap")` or [NEWS.md](NEWS.md) for a full list of changes.
<!-- This section gets automatically generated from inst/NEWS.md -->
```{r news, echo=FALSE, results="asis"}
cat(dynutils::recent_news())
```
## Dynverse dependencies
<!-- Generated by "update_dependency_graphs.R" in the main dynverse repo -->
![](man/figures/dependencies.png)