forked from robcarver17/systematictradingexamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
323 lines (219 loc) · 8.02 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import pandas as pd
import numpy as np
import scipy.stats as st
DAYS_IN_YEAR=256.0
ROOT_DAYS_IN_YEAR=DAYS_IN_YEAR**.5
useroot=""
def cap_forecast(xrow, capmin,capmax):
"""
Cap forecasts.
"""
## Assumes we have a single column
x=xrow[0]
if x<capmin:
return capmin
elif x>capmax:
return capmax
return x
def cap_series(xseries, capmin=-20.0,capmax=20.0):
"""
Apply capping to each element of a time series
For a long only investor, replace -20.0 with 0.0
"""
return xseries.apply(cap_forecast, axis=1, args=(capmin, capmax))
def get_list_code():
ans=pd.read_csv("%sconfig.csv" % useroot)
return list(ans.Instrument)
def get_point_sizes():
ans=pd.read_csv("%sconfig.csv" % useroot)
psizes=dict([(x[1].Instrument, float(x[1].Pointsize)) for x in ans.iterrows()])
return psizes
def pd_readcsv(filename):
"""
Reads the pandas dataframe from a filename, given the index is correctly labelled
"""
ans=pd.read_csv(filename)
ans.index=pd.to_datetime(ans['DATETIME'])
del ans['DATETIME']
ans.index.name=None
return ans
def find_datediff(data_row):
"""
data differential for a single row
"""
if np.isnan(data_row.NEAR_MONTH) or np.isnan(data_row.TRADE_MONTH):
return np.nan
nearest_dt=pd.to_datetime(str(int(data_row.NEAR_MONTH)), format="%Y%m")
trade_dt=pd.to_datetime(str(int(data_row.TRADE_MONTH)), format="%Y%m")
distance = trade_dt - nearest_dt
distance_years=distance.days/365.25
## if nearder contract is cheaper; price will fall
price_diff=data_row.NEARER - data_row.TRADED
return price_diff/distance_years
def ewmac_forecast_scalar(Lfast, Lslow):
"""
Function to return the forecast scalar (table 49 of the book)
Only defined for certain values
"""
fsdict=dict(l2_8=10.6, l4_16=7.5, l8_32=5.3, l16_64=3.75, l32_128=2.65, l64_256=1.87)
lkey="l%d_%d" % (Lfast, Lslow)
if lkey in fsdict:
return fsdict[lkey]
else:
print "Warning: No scalar defined for Lfast=%d, Lslow=%d, using default of 1.0" % (Lfast, Lslow)
return 1.0
def get_price_for_instrument(code):
filename="%sdata/%s_price.csv" % (useroot, code)
price=pd_readcsv(filename)
return price
def get_carry_data(code):
filename="%sdata/%s_carrydata.csv" % (useroot, code)
data=pd_readcsv(filename)
return data
def uniquets(df3):
"""
Makes x unique
"""
df3=df3.groupby(level=0).first()
return df3
def daily_resample(b, a):
"""
Returns b dataframe resampled to a dataframe index
"""
master_index=a.index
a_daily=a.resample('1D') ## Only want index, fill method is irrelevant
b=uniquets(b)
b_daily=b.reindex(a_daily.index, method="ffill", limit=1)
new_b=b_daily.reindex(master_index, method="ffill", limit=1)
return new_b
def calculate_pandl(position_ts, price_ts, pointsize=1.0):
rs_positions_ts=daily_resample(position_ts, price_ts).ffill()
rets=price_ts - price_ts.shift(1)
local_rets=rs_positions_ts.shift(1)*rets*pointsize
return local_rets
def annualised_rets(total_rets):
mean_rets=total_rets.mean(skipna=True)
annualised_rets=mean_rets*DAYS_IN_YEAR
return annualised_rets
def annualised_vol(total_rets):
actual_total_daily_vol=total_rets.std(skipna=True)
actual_total_annual_vol=actual_total_daily_vol*ROOT_DAYS_IN_YEAR
return actual_total_annual_vol
def sharpe(total_rets):
sharpe=annualised_rets(total_rets)/annualised_vol(total_rets)
return sharpe
def stack_ts(tslist, start_date=pd.datetime(1970,1,1)):
"""
Take a list of time series, and stack them, generating a new time series
"""
tslist_values=[list(x.iloc[:,0].values) for x in tslist]
stack_values=sum(tslist_values, [])
stack_values=[x for x in stack_values if not np.isinf(x)]
stacked=arbitrary_timeindex(stack_values, start_date)
return stacked
def slices_for_ts(data, freq="12M"):
"""
Return date indices for slicing up a data frame
"""
yridx=list(pd.date_range(start=data.index[0], end=data.index[-1], freq=freq))
yridx_stub=list(pd.date_range(start=yridx[-1], periods=2, freq=freq))[-1]
yridx=yridx+[yridx_stub]
return yridx
def break_up_ts(data, freq="12M"):
"""
Take a data frame and break it into chunks
returns a list of data frames
"""
yridx=slices_for_ts(data, freq)
brokenup=[]
for idx in range(len(yridx))[1:]:
brokenup.append(data[yridx[idx-1]:yridx[idx]])
return brokenup
def drawdown(x):
### Returns a ts of drawdowns for a time series x
## rolling max with infinite window
maxx=pd.rolling_max(x, 99999999, min_periods=1)
return (x - maxx)/maxx
class account_curve(pd.core.series.Series):
"""
Inherits from pandas time series to give useful information
Could be in % or GBP terms
Downsamples to daily before doing anything else
Can
"""
def new_freq(self, freq):
## Set up a new frequency.
## Note this will break certain things (eg Sharpe) so be careful
if freq=="Daily":
## we assume we're daily so do nothing
return self
if freq=="Weekly":
return self.cumsum().ffill().resample("W").diff()
if freq=="Monthly":
return self.cumsum().ffill().resample("M").diff()
def sharpe(self):
## assumes daily returns
return ROOT_DAYS_IN_YEAR*self.mean()/self.std()
def annstd(self):
return ROOT_DAYS_IN_YEAR*self.std()
def losses(self):
x=self.values
return [z for z in x if z<0]
def gains(self):
x=self.values
return [z for z in x if z>0]
def avg_loss(self):
return np.mean(self.losses())
def avg_gain(self):
return np.mean(self.gains())
def drawdown(self):
## in case need numerous stats
if "drawdownacc" not in dir(self):
setattr(self, "drawdownacc", drawdown(cum_perc(self)))
return self.drawdownacc
def avg_drawdown(self):
return self.perc_drawdown(50.0)
def perc_drawdown(self, q):
dd=self.drawdown()
return np.percentile(dd, q)
def worst_drawdown(self):
dd=self.drawdown()
return np.nanmin(dd.values)
def time_in_drawdown(self):
dd=self.drawdown()
dd=[z for z in dd if not np.isnan(z)]
in_dd=float(len([z for z in dd if z<0]))
return in_dd/float(len(dd))
def monthly_returns(self):
return self.resample("1M", how="sum")
def gaintolossratio(self):
return self.avg_gain()/-self.avg_loss()
def profitfactor(self):
return sum(self.gains())/-sum(self.losses())
def hitrate(self):
no_gains=float(len(self.gains()))
no_losses=float(len(self.losses()))
return no_gains/(no_losses+no_gains)
def cum_perc(pd_timeseries):
"""
Cumulate percentage returns for a pandas time series
"""
cum_datalist=[1+x for x in pd_timeseries]
cum_datalist=pd.TimeSeries(cum_datalist, index=pd_timeseries.index)
return cum_datalist.cumprod()
def arbitrary_timeindex(Nperiods, index_start=pd.datetime(2000,1,1)):
"""
For nice plotting, convert a list of prices or returns into an arbitrary pandas time series
"""
ans=pd.bdate_range(start=index_start, periods=Nperiods)
return ans
def arbitrary_timeseries(datalist, index_start=pd.datetime(2000,1,1)):
"""
For nice plotting, convert a list of prices or returns into an arbitrary pandas time series
"""
ans=pd.TimeSeries(datalist, index=arbitrary_timeindex(len(datalist), index_start))
return ans
def remove_nans_from_list(xlist):
return [x for x in xlist if not np.isnan(x)]
def autocorr(x, t=1):
return np.corrcoef(np.array([x[0:len(x)-t], x[t:len(x)]]))[0,1]