forked from robcarver17/systematictradingexamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandomanalysisofequitycurveproperties.py
81 lines (53 loc) · 1.8 KB
/
randomanalysisofequitycurveproperties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
See http://qoppac.blogspot.co.uk/2015/11/using-random-data.html for more examples
"""
from commonrandom import arbitrary_timeindex, skew_returns_annualised
from matplotlib.pyplot import show, hist
from common import DAYS_IN_YEAR, ROOT_DAYS_IN_YEAR, account_curve
import pandas as pd
import numpy as np
import scipy.stats as st
def plot_random_curves(pddf_rand_data):
pddf_rand_data.cumsum().plot(colormap="Pastel2", legend=False)
avg_random=pddf_rand_data.cumsum().mean(axis=1)
avg_random.plot(color="k")
"""
Set up the parameters
"""
length_backtest_years=10
number_of_random_curves=1000
annualSR=0.5
want_skew=1.0
"""
Do the bootstrap of many random curves
"""
length_bdays=length_backtest_years*DAYS_IN_YEAR
random_curves=[skew_returns_annualised(annualSR=annualSR, want_skew=want_skew, size=length_bdays)
for NotUsed in range(number_of_random_curves)]
## Turn into a dataframe
random_curves_npa=np.array(random_curves).transpose()
pddf_rand_data=pd.DataFrame(random_curves_npa, index=arbitrary_timeindex(length_bdays), columns=[str(i) for i in range(number_of_random_curves)])
## This is a nice representation as well
acccurves_rand_data=[account_curve(pddf_rand_data[x]) for x in pddf_rand_data]
"""
Plot the curves, just for interest
"""
plot_random_curves(pddf_rand_data)
show()
"""
Get the statistic we are interested in
Change 'function_to_apply' to get what you want
"""
function_to_apply=np.percentile
function_args=(100.0/DAYS_IN_YEAR,)
results=pddf_rand_data.apply(function_to_apply, axis=0, args=function_args)
## Annualise (not always needed, depends on the statistic)
#results=[x*ROOT_DAYS_IN_YEAR for x in results]
hist(results, 100)
show()
"""
Or we can do this kind of thing
"""
results=[x.worst_drawdown() for x in acccurves_rand_data]
hist(results, 100)
show()