forked from robcarver17/systematictradingexamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtradingrules.py
73 lines (47 loc) · 2.07 KB
/
tradingrules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
Trading rules
Note that the scripted versions of these can be found in the carry and ewmac files
"""
import pandas as pd
import numpy as np
from common import cap_series, pd_readcsv, find_datediff, ROOT_DAYS_IN_YEAR, ewmac_forecast_scalar
def calc_carry_forecast(carrydata, price, f_scalar=30.0):
"""
Carry calculation
Formulation here will work whether we are trading the nearest contract or not
For other asset classes you will have to work out nerpu (net expected return in price units) yourself
"""
nerpu=carrydata.apply(find_datediff, axis=1)
stdev_returns=volatility(price)
ann_stdev=stdev_returns*ROOT_DAYS_IN_YEAR
raw_carry=nerpu/ann_stdev
forecast=raw_carry*f_scalar
cap_forecast=cap_series(forecast)
return cap_forecast
def volatility(price, vol_lookback=25):
return pd.ewmstd(price - price.shift(1), span=vol_lookback, min_periods=vol_lookback)
def calc_ewmac_forecast(price, Lfast, Lslow=None, usescalar=True):
"""
Calculate the ewmac trading fule forecast, given a price and EWMA speeds Lfast, Lslow and vol_lookback
Assumes that 'price' is daily data
"""
## price: This is the stitched price series
## We can't use the price of the contract we're trading, or the volatility will be jumpy
## And we'll miss out on the rolldown. See http://qoppac.blogspot.co.uk/2015/05/systems-building-futures-rolling.html
if Lslow is None:
Lslow=4*Lfast
## We don't need to calculate the decay parameter, just use the span directly
fast_ewma=pd.ewma(price, span=Lfast)
slow_ewma=pd.ewma(price, span=Lslow)
raw_ewmac=fast_ewma - slow_ewma
## volatility adjustment
stdev_returns=volatility(price)
vol_adj_ewmac=raw_ewmac/stdev_returns
## scaling adjustment
if usescalar:
f_scalar=ewmac_forecast_scalar(Lfast, Lslow)
forecast=vol_adj_ewmac*f_scalar
else:
forecast=vol_adj_ewmac
cap_forecast=cap_series(forecast, capmin=-20.0,capmax=20.0)
return cap_forecast