forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
198 lines (149 loc) · 6.96 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
"""Project.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1KBd1Z_IGBUVY5zekPr5kmCwVuSnycMUY
"""
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input("Would you like to see data for Chicago, New york city OR Washington? Type 'none' for no time filter: ").lower()
while city not in ['chicago','new york city', 'washington']:
city = input("Please enter a city name as 'chicago', 'new york city' or 'washington'")
i = 0
while input("Would you like to see 5 lines of raw data? Please enter 'yes' or 'no' :").lower() == "yes":
print(pd.read_csv(CITY_DATA[city])[i:i+5])
i +=5
continue
months = ['january', 'february', 'march', 'april', 'may', 'june']
# get user input for month (all, january, february, ... , june)
filtering_option = input("Would you like to filter the data by 'month', 'day', 'both' or 'not at all'? ").lower()
print("Your filtering option is {}".format(filtering_option))
if filtering_option.lower()=='month':
month = input("Which month? - January, February, March, April, May, or June?: ").lower()
while month not in ['january', 'february', 'march', 'april', 'may', 'june']:
month = input("Your input is invalid! Please enter a month as January, February, March, April, May, or June: ").lower()
day=None
month = months.index(month) + 1
elif filtering_option.lower()=='day':
month = None
day = input("Which day - Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday?: ").title()
# get user input for day of week (all, monday, tuesday, ... sunday)
elif filtering_option.lower()=='both':
month = input("Which month - January, February, March, April, May, or June?: ").lower()
day = input("Which day - Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday?: ").title()
month = months.index(month) + 1
else:
month = None
day = None
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df = pd.read_csv(CITY_DATA[city])
df['Start Time'] = pd.to_datetime(df['Start Time'])
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.day_name()
if month == None and day == None :
df=df
elif day == None:
df = df[df['month'] == month]
elif month == None:
df = df[df['day_of_week'] == day]
else:
df = df[df['month']==month]
df = df[df['day_of_week']==day]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
months = ['january', 'february', 'march', 'april', 'may', 'june']
# display the most common month
print('The most common month:', months[df['month'].mode()[0]-1])
# display the most common day of week
print('The most common day of week:', df['day_of_week'].mode()[0])
# display the most common start hour
df['Start Time'] = pd.to_datetime(df['Start Time'])
df['hour'] = df['Start Time'].dt.hour
popular_hour = df['hour'].mode()[0]
print('Most Popular Start Hour:', popular_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
print("The most commonly used start station is:", df['Start Station'].mode()[0])
# display most commonly used end station
print("The most commonly used end station is:", df['End Station'].mode()[0])
# display most frequent combination of start station and end station trip
df["combined_stations"] = df['Start Station'] + ", " + df['End Station']
print("The most frequent combination of start station and end station trip: {}".format(df['combined_stations'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
df['Start Time'] = pd.to_datetime(df['Start Time'])
df['End Time'] = pd.to_datetime(df['End Time'])
df['Trip_time'] = df['End Time'] -df['Start Time']
print("The total travel time is:", df['Trip_time'].sum())
# display mean travel time
print("The average travel time is:", df['Trip_time'].mean())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
print("The counts of user types are: \n", df['User Type'].value_counts())
# Display counts of gender
print("The counts of genders are:\n", df['Gender'].value_counts())
# Display earliest, most recent, and most common year of birth
print("The earliest year of birth is:", int(df['Birth Year'].min()))
print("The most recent year of birth is:", int(df['Birth Year'].max()))
print("The most common year of birth is:", int(df['Birth Year'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
if city == "chicago" or city == "new york city":
user_stats(df)
else:
break
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()