diff --git a/R/model_recipe.R b/R/model_recipe.R index 3253e6d..1272930 100644 --- a/R/model_recipe.R +++ b/R/model_recipe.R @@ -10,6 +10,10 @@ model_recipe <- function(training_data) { recipe(formula = as.formula(outbreak_30 ~ + # TODO add day of year + # TODO add static + # TODO add immunity layer + # TODO add recent outbreak layer - has there been an outbreak this season anomaly_relative_humidity_30 + anomaly_temperature_30 + anomaly_precipitation_30 + diff --git a/_targets.R b/_targets.R index af2b599..c980219 100644 --- a/_targets.R +++ b/_targets.R @@ -90,7 +90,7 @@ dynamic_targets <- tar_plan( # project to the template and save as parquets (these can now be queried for analysis) # this maintains the branches, saves separate files split by date - # TODO NAs outside of the continent + tar_target(sentinel_ndvi_transformed, transform_sentinel_ndvi(sentinel_ndvi_downloaded, continent_raster_template, @@ -164,7 +164,7 @@ dynamic_targets <- tar_plan( # project to the template and save as parquets (these can now be queried for analysis) # this maintains the branches, saves separate files split by date - # TODO NAs outside of the continent + tar_target(modis_ndvi_transformed, transform_modis_ndvi(modis_ndvi_downloaded_subset, continent_raster_template, @@ -229,7 +229,7 @@ dynamic_targets <- tar_plan( cue = tar_cue(tar_cue_general)), # project to the template and save as arrow dataset - # TODO NAs outside of the continent + tar_target(nasa_weather_transformed, transform_nasa_weather(nasa_weather_pre_transformed, nasa_weather_transformed_directory, @@ -281,7 +281,8 @@ dynamic_targets <- tar_plan( cue = tar_cue(tar_cue_upload_aws)), # only run this if you need to upload new data # project to the template and save as arrow dataset - # TODO NAs outside of the continent + + # TODO add grib_ls tar_target(ecmwf_forecasts_transformed, transform_ecmwf_forecasts(ecmwf_forecasts_downloaded, ecmwf_forecasts_transformed_directory, @@ -550,7 +551,7 @@ model_targets <- tar_plan( # xgboost settings tar_target(base_score, sum(training_data$outbreak_30==TRUE)/nrow(training_data)), tar_target(interaction_constraints, '[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]]'), # area is the 16th col in rec_juiced - tar_target(monotone_constraints, c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), + tar_target(monotone_constraints, c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), # enforce positive relationship for area # tuning tar_target(spec, model_specs(base_score, interaction_constraints, monotone_constraints)),