-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0_Introduction.typ
64 lines (59 loc) · 1.66 KB
/
0_Introduction.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#import "@preview/oxifmt:0.2.0": strfmt
#import "../funcs.typ": eqcolumns
#heading(level: 2, numbering: none)[Introduction]
#eqcolumns(2)[
The task consists of a binary classification problem, the goal is to perform fingerprint spoofing detection (i.e. to distinguish between real and fake fingerprints).
The dataset consists of 6 features. In this first part, we will analyze some statistics of the dataset and the correlation between the features.
]
#let cells = ()
#for i in range(0, 6) {
for j in range(0, 6) {
if (i != j) {
cells.push(
table.cell(
inset: 0em,
x: i + 1,
y: j + 1,
image(strfmt("../imgs/scatter/overlay_{}_{}.svg", i, j)),
),
)
} else {
cells.push(
table.cell(
inset: 0em,
x: i + 1,
y: j + 1,
image(strfmt("../imgs/hist/histograms_{}.svg", i)),
),
)
}
}
}
#figure(
caption: [Summary of the dataset features plotted against each other, number corresponds to the feature number],
[
#set text(size: 0.7em)
#table(
align: center + horizon,
stroke: none,
columns: 7,
rows: 3,
[],
[1],
[2],
[3],
[4],
[5],
[6],
table.cell(x: 0, y: 1, rotate(-90deg, reflow: true)[1]),
table.cell(x: 0, y: 2, rotate(-90deg, reflow: true)[2]),
table.cell(x: 0, y: 3, rotate(-90deg, reflow: true)[3]),
table.cell(x: 0, y: 4, rotate(-90deg, reflow: true)[4]),
table.cell(x: 0, y: 5, rotate(-90deg, reflow: true)[5]),
table.cell(x: 0, y: 6, rotate(-90deg, reflow: true)[6]),
..cells,
)
],
kind: image,
) <scatter>
#v(1fr)