-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcluster-overview.html
executable file
·287 lines (242 loc) · 14.2 KB
/
cluster-overview.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Cluster Mode Overview - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="content" id="content">
<h1 class="title">Cluster Mode Overview</h1>
<p>This document gives a short overview of how Spark runs on clusters, to make it easier to understand
the components involved. Read through the <a href="submitting-applications.html">application submission guide</a>
to learn about launching applications on a cluster.</p>
<h1 id="components">Components</h1>
<p>Spark applications run as independent sets of processes on a cluster, coordinated by the <code>SparkContext</code>
object in your main program (called the <em>driver program</em>).</p>
<p>Specifically, to run on a cluster, the SparkContext can connect to several types of <em>cluster managers</em>
(either Spark’s own standalone cluster manager, Mesos or YARN), which allocate resources across
applications. Once connected, Spark acquires <em>executors</em> on nodes in the cluster, which are
processes that run computations and store data for your application.
Next, it sends your application code (defined by JAR or Python files passed to SparkContext) to
the executors. Finally, SparkContext sends <em>tasks</em> to the executors to run.</p>
<p style="text-align: center;">
<img src="img/cluster-overview.png" title="Spark cluster components" alt="Spark cluster components" />
</p>
<p>There are several useful things to note about this architecture:</p>
<ol>
<li>Each application gets its own executor processes, which stay up for the duration of the whole
application and run tasks in multiple threads. This has the benefit of isolating applications
from each other, on both the scheduling side (each driver schedules its own tasks) and executor
side (tasks from different applications run in different JVMs). However, it also means that
data cannot be shared across different Spark applications (instances of SparkContext) without
writing it to an external storage system.</li>
<li>Spark is agnostic to the underlying cluster manager. As long as it can acquire executor
processes, and these communicate with each other, it is relatively easy to run it even on a
cluster manager that also supports other applications (e.g. Mesos/YARN).</li>
<li>The driver program must listen for and accept incoming connections from its executors throughout
its lifetime (e.g., see <a href="configuration.html#networking">spark.driver.port in the network config
section</a>). As such, the driver program must be network
addressable from the worker nodes.</li>
<li>Because the driver schedules tasks on the cluster, it should be run close to the worker
nodes, preferably on the same local area network. If you’d like to send requests to the
cluster remotely, it’s better to open an RPC to the driver and have it submit operations
from nearby than to run a driver far away from the worker nodes.</li>
</ol>
<h1 id="cluster-manager-types">Cluster Manager Types</h1>
<p>The system currently supports three cluster managers:</p>
<ul>
<li><a href="spark-standalone.html">Standalone</a> – a simple cluster manager included with Spark that makes it
easy to set up a cluster.</li>
<li><a href="running-on-mesos.html">Apache Mesos</a> – a general cluster manager that can also run Hadoop MapReduce
and service applications.</li>
<li><a href="running-on-yarn.html">Hadoop YARN</a> – the resource manager in Hadoop 2.</li>
</ul>
<h1 id="submitting-applications">Submitting Applications</h1>
<p>Applications can be submitted to a cluster of any type using the <code>spark-submit</code> script.
The <a href="submitting-applications.html">application submission guide</a> describes how to do this.</p>
<h1 id="monitoring">Monitoring</h1>
<p>Each driver program has a web UI, typically on port 4040, that displays information about running
tasks, executors, and storage usage. Simply go to <code>http://<driver-node>:4040</code> in a web browser to
access this UI. The <a href="monitoring.html">monitoring guide</a> also describes other monitoring options.</p>
<h1 id="job-scheduling">Job Scheduling</h1>
<p>Spark gives control over resource allocation both <em>across</em> applications (at the level of the cluster
manager) and <em>within</em> applications (if multiple computations are happening on the same SparkContext).
The <a href="job-scheduling.html">job scheduling overview</a> describes this in more detail.</p>
<h1 id="glossary">Glossary</h1>
<p>The following table summarizes terms you’ll see used to refer to cluster concepts:</p>
<table class="table">
<thead>
<tr><th style="width: 130px;">Term</th><th>Meaning</th></tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>User program built on Spark. Consists of a <em>driver program</em> and <em>executors</em> on the cluster.</td>
</tr>
<tr>
<td>Application jar</td>
<td>
A jar containing the user's Spark application. In some cases users will want to create
an "uber jar" containing their application along with its dependencies. The user's jar
should never include Hadoop or Spark libraries, however, these will be added at runtime.
</td>
</tr>
<tr>
<td>Driver program</td>
<td>The process running the main() function of the application and creating the SparkContext</td>
</tr>
<tr>
<td>Cluster manager</td>
<td>An external service for acquiring resources on the cluster (e.g. standalone manager, Mesos, YARN)</td>
</tr>
<tr>
<td>Deploy mode</td>
<td>Distinguishes where the driver process runs. In "cluster" mode, the framework launches
the driver inside of the cluster. In "client" mode, the submitter launches the driver
outside of the cluster.</td>
</tr>
<tr>
<td>Worker node</td>
<td>Any node that can run application code in the cluster</td>
</tr>
<tr>
<td>Executor</td>
<td>A process launched for an application on a worker node, that runs tasks and keeps data in memory
or disk storage across them. Each application has its own executors.</td>
</tr>
<tr>
<td>Task</td>
<td>A unit of work that will be sent to one executor</td>
</tr>
<tr>
<td>Job</td>
<td>A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action
(e.g. <code>save</code>, <code>collect</code>); you'll see this term used in the driver's logs.</td>
</tr>
<tr>
<td>Stage</td>
<td>Each job gets divided into smaller sets of tasks called <em>stages</em> that depend on each other
(similar to the map and reduce stages in MapReduce); you'll see this term used in the driver's logs.</td>
</tr>
</tbody>
</table>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>