-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathml-collaborative-filtering.html
executable file
·626 lines (472 loc) · 45.8 KB
/
ml-collaborative-filtering.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Collaborative Filtering - spark.ml - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
<b>Collaborative filtering</b>
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Collaborative Filtering - spark.ml</h1>
<ul id="markdown-toc">
<li><a href="#collaborative-filtering">Collaborative filtering</a> <ul>
<li><a href="#explicit-vs-implicit-feedback">Explicit vs. implicit feedback</a></li>
<li><a href="#scaling-of-the-regularization-parameter">Scaling of the regularization parameter</a></li>
</ul>
</li>
<li><a href="#examples">Examples</a></li>
</ul>
<h2 id="collaborative-filtering">Collaborative filtering</h2>
<p><a href="http://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering">Collaborative filtering</a>
is commonly used for recommender systems. These techniques aim to fill in the
missing entries of a user-item association matrix. <code>spark.ml</code> currently supports
model-based collaborative filtering, in which users and products are described
by a small set of latent factors that can be used to predict missing entries.
<code>spark.ml</code> uses the <a href="http://dl.acm.org/citation.cfm?id=1608614">alternating least squares
(ALS)</a>
algorithm to learn these latent factors. The implementation in <code>spark.ml</code> has the
following parameters:</p>
<ul>
<li><em>numBlocks</em> is the number of blocks the users and items will be partitioned into in order to parallelize computation (defaults to 10).</li>
<li><em>rank</em> is the number of latent factors in the model (defaults to 10).</li>
<li><em>maxIter</em> is the maximum number of iterations to run (defaults to 10).</li>
<li><em>regParam</em> specifies the regularization parameter in ALS (defaults to 1.0).</li>
<li><em>implicitPrefs</em> specifies whether to use the <em>explicit feedback</em> ALS variant or one adapted for
<em>implicit feedback</em> data (defaults to <code>false</code> which means using <em>explicit feedback</em>).</li>
<li><em>alpha</em> is a parameter applicable to the implicit feedback variant of ALS that governs the
<em>baseline</em> confidence in preference observations (defaults to 1.0).</li>
<li><em>nonnegative</em> specifies whether or not to use nonnegative constraints for least squares (defaults to <code>false</code>).</li>
</ul>
<h3 id="explicit-vs-implicit-feedback">Explicit vs. implicit feedback</h3>
<p>The standard approach to matrix factorization based collaborative filtering treats
the entries in the user-item matrix as <em>explicit</em> preferences given by the user to the item,
for example, users giving ratings to movies.</p>
<p>It is common in many real-world use cases to only have access to <em>implicit feedback</em> (e.g. views,
clicks, purchases, likes, shares etc.). The approach used in <code>spark.mllib</code> to deal with such data is taken
from <a href="http://dx.doi.org/10.1109/ICDM.2008.22">Collaborative Filtering for Implicit Feedback Datasets</a>.
Essentially, instead of trying to model the matrix of ratings directly, this approach treats the data
as numbers representing the <em>strength</em> in observations of user actions (such as the number of clicks,
or the cumulative duration someone spent viewing a movie). Those numbers are then related to the level of
confidence in observed user preferences, rather than explicit ratings given to items. The model
then tries to find latent factors that can be used to predict the expected preference of a user for
an item.</p>
<h3 id="scaling-of-the-regularization-parameter">Scaling of the regularization parameter</h3>
<p>We scale the regularization parameter <code>regParam</code> in solving each least squares problem by
the number of ratings the user generated in updating user factors,
or the number of ratings the product received in updating product factors.
This approach is named “ALS-WR” and discussed in the paper
“<a href="http://dx.doi.org/10.1007/978-3-540-68880-8_32">Large-Scale Parallel Collaborative Filtering for the Netflix Prize</a>”.
It makes <code>regParam</code> less dependent on the scale of the dataset, so we can apply the
best parameter learned from a sampled subset to the full dataset and expect similar performance.</p>
<h2 id="examples">Examples</h2>
<div class="codetabs">
<div data-lang="scala">
<p>In the following example, we load rating data from the
<a href="http://grouplens.org/datasets/movielens/">MovieLens dataset</a>, each row
consisting of a user, a movie, a rating and a timestamp.
We then train an ALS model which assumes, by default, that the ratings are
explicit (<code>implicitPrefs</code> is <code>false</code>).
We evaluate the recommendation model by measuring the root-mean-square error of
rating prediction.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.recommendation.ALS"><code>ALS</code> Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.recommendation.ALS</span>
<span class="k">import</span> <span class="nn">org.apache.spark.sql.functions._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.sql.types.DoubleType</span>
<span class="k">case</span> <span class="k">class</span> <span class="nc">Rating</span><span class="o">(</span><span class="n">userId</span><span class="k">:</span> <span class="kt">Int</span><span class="o">,</span> <span class="n">movieId</span><span class="k">:</span> <span class="kt">Int</span><span class="o">,</span> <span class="n">rating</span><span class="k">:</span> <span class="kt">Float</span><span class="o">,</span> <span class="n">timestamp</span><span class="k">:</span> <span class="kt">Long</span><span class="o">)</span>
<span class="k">object</span> <span class="nc">Rating</span> <span class="o">{</span>
<span class="k">def</span> <span class="n">parseRating</span><span class="o">(</span><span class="n">str</span><span class="k">:</span> <span class="kt">String</span><span class="o">)</span><span class="k">:</span> <span class="kt">Rating</span> <span class="o">=</span> <span class="o">{</span>
<span class="k">val</span> <span class="n">fields</span> <span class="k">=</span> <span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">"::"</span><span class="o">)</span>
<span class="n">assert</span><span class="o">(</span><span class="n">fields</span><span class="o">.</span><span class="n">size</span> <span class="o">==</span> <span class="mi">4</span><span class="o">)</span>
<span class="nc">Rating</span><span class="o">(</span><span class="n">fields</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="n">toInt</span><span class="o">,</span> <span class="n">fields</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="n">toInt</span><span class="o">,</span> <span class="n">fields</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">toFloat</span><span class="o">,</span> <span class="n">fields</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">toLong</span><span class="o">)</span>
<span class="o">}</span>
<span class="o">}</span>
<span class="k">val</span> <span class="n">ratings</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">"data/mllib/als/sample_movielens_ratings.txt"</span><span class="o">)</span>
<span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="nc">Rating</span><span class="o">.</span><span class="n">parseRating</span><span class="o">)</span>
<span class="o">.</span><span class="n">toDF</span><span class="o">()</span>
<span class="k">val</span> <span class="nc">Array</span><span class="o">(</span><span class="n">training</span><span class="o">,</span> <span class="n">test</span><span class="o">)</span> <span class="k">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.8</span><span class="o">,</span> <span class="mf">0.2</span><span class="o">))</span>
<span class="c1">// Build the recommendation model using ALS on the training data</span>
<span class="k">val</span> <span class="n">als</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">ALS</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="o">.</span><span class="n">setRegParam</span><span class="o">(</span><span class="mf">0.01</span><span class="o">)</span>
<span class="o">.</span><span class="n">setUserCol</span><span class="o">(</span><span class="s">"userId"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setItemCol</span><span class="o">(</span><span class="s">"movieId"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setRatingCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">als</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Evaluate the model by computing the RMSE on the test data</span>
<span class="k">val</span> <span class="n">predictions</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">test</span><span class="o">)</span>
<span class="o">.</span><span class="n">withColumn</span><span class="o">(</span><span class="s">"rating"</span><span class="o">,</span> <span class="n">col</span><span class="o">(</span><span class="s">"rating"</span><span class="o">).</span><span class="n">cast</span><span class="o">(</span><span class="nc">DoubleType</span><span class="o">))</span>
<span class="o">.</span><span class="n">withColumn</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="n">col</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">).</span><span class="n">cast</span><span class="o">(</span><span class="nc">DoubleType</span><span class="o">))</span>
<span class="k">val</span> <span class="n">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setLabelCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">rmse</span> <span class="k">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Root-mean-square error = $rmse"</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/ALSExample.scala" in the Spark repo.</small></div>
<p>If the rating matrix is derived from another source of information (i.e. it is
inferred from other signals), you can set <code>implicitPrefs</code> to <code>true</code> to get
better results:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">val</span> <span class="n">als</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">ALS</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="o">.</span><span class="n">setRegParam</span><span class="o">(</span><span class="mf">0.01</span><span class="o">)</span>
<span class="o">.</span><span class="n">setImplicitPrefs</span><span class="o">(</span><span class="kc">true</span><span class="o">)</span>
<span class="o">.</span><span class="n">setUserCol</span><span class="o">(</span><span class="s">"userId"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setItemCol</span><span class="o">(</span><span class="s">"movieId"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setRatingCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p>In the following example, we load rating data from the
<a href="http://grouplens.org/datasets/movielens/">MovieLens dataset</a>, each row
consisting of a user, a movie, a rating and a timestamp.
We then train an ALS model which assumes, by default, that the ratings are
explicit (<code>implicitPrefs</code> is <code>false</code>).
We evaluate the recommendation model by measuring the root-mean-square error of
rating prediction.</p>
<p>Refer to the <a href="api/java/org/apache/spark/ml/recommendation/ALS.html"><code>ALS</code> Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.io.Serializable</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.function.Function</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.recommendation.ALS</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.recommendation.ALSModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kd">public</span> <span class="kd">static</span> <span class="kd">class</span> <span class="nc">Rating</span> <span class="kd">implements</span> <span class="n">Serializable</span> <span class="o">{</span>
<span class="kd">private</span> <span class="kt">int</span> <span class="n">userId</span><span class="o">;</span>
<span class="kd">private</span> <span class="kt">int</span> <span class="n">movieId</span><span class="o">;</span>
<span class="kd">private</span> <span class="kt">float</span> <span class="n">rating</span><span class="o">;</span>
<span class="kd">private</span> <span class="kt">long</span> <span class="n">timestamp</span><span class="o">;</span>
<span class="kd">public</span> <span class="nf">Rating</span><span class="o">()</span> <span class="o">{}</span>
<span class="kd">public</span> <span class="nf">Rating</span><span class="o">(</span><span class="kt">int</span> <span class="n">userId</span><span class="o">,</span> <span class="kt">int</span> <span class="n">movieId</span><span class="o">,</span> <span class="kt">float</span> <span class="n">rating</span><span class="o">,</span> <span class="kt">long</span> <span class="n">timestamp</span><span class="o">)</span> <span class="o">{</span>
<span class="k">this</span><span class="o">.</span><span class="na">userId</span> <span class="o">=</span> <span class="n">userId</span><span class="o">;</span>
<span class="k">this</span><span class="o">.</span><span class="na">movieId</span> <span class="o">=</span> <span class="n">movieId</span><span class="o">;</span>
<span class="k">this</span><span class="o">.</span><span class="na">rating</span> <span class="o">=</span> <span class="n">rating</span><span class="o">;</span>
<span class="k">this</span><span class="o">.</span><span class="na">timestamp</span> <span class="o">=</span> <span class="n">timestamp</span><span class="o">;</span>
<span class="o">}</span>
<span class="kd">public</span> <span class="kt">int</span> <span class="nf">getUserId</span><span class="o">()</span> <span class="o">{</span>
<span class="k">return</span> <span class="n">userId</span><span class="o">;</span>
<span class="o">}</span>
<span class="kd">public</span> <span class="kt">int</span> <span class="nf">getMovieId</span><span class="o">()</span> <span class="o">{</span>
<span class="k">return</span> <span class="n">movieId</span><span class="o">;</span>
<span class="o">}</span>
<span class="kd">public</span> <span class="kt">float</span> <span class="nf">getRating</span><span class="o">()</span> <span class="o">{</span>
<span class="k">return</span> <span class="n">rating</span><span class="o">;</span>
<span class="o">}</span>
<span class="kd">public</span> <span class="kt">long</span> <span class="nf">getTimestamp</span><span class="o">()</span> <span class="o">{</span>
<span class="k">return</span> <span class="n">timestamp</span><span class="o">;</span>
<span class="o">}</span>
<span class="kd">public</span> <span class="kd">static</span> <span class="n">Rating</span> <span class="nf">parseRating</span><span class="o">(</span><span class="n">String</span> <span class="n">str</span><span class="o">)</span> <span class="o">{</span>
<span class="n">String</span><span class="o">[]</span> <span class="n">fields</span> <span class="o">=</span> <span class="n">str</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">"::"</span><span class="o">);</span>
<span class="k">if</span> <span class="o">(</span><span class="n">fields</span><span class="o">.</span><span class="na">length</span> <span class="o">!=</span> <span class="mi">4</span><span class="o">)</span> <span class="o">{</span>
<span class="k">throw</span> <span class="k">new</span> <span class="nf">IllegalArgumentException</span><span class="o">(</span><span class="s">"Each line must contain 4 fields"</span><span class="o">);</span>
<span class="o">}</span>
<span class="kt">int</span> <span class="n">userId</span> <span class="o">=</span> <span class="n">Integer</span><span class="o">.</span><span class="na">parseInt</span><span class="o">(</span><span class="n">fields</span><span class="o">[</span><span class="mi">0</span><span class="o">]);</span>
<span class="kt">int</span> <span class="n">movieId</span> <span class="o">=</span> <span class="n">Integer</span><span class="o">.</span><span class="na">parseInt</span><span class="o">(</span><span class="n">fields</span><span class="o">[</span><span class="mi">1</span><span class="o">]);</span>
<span class="kt">float</span> <span class="n">rating</span> <span class="o">=</span> <span class="n">Float</span><span class="o">.</span><span class="na">parseFloat</span><span class="o">(</span><span class="n">fields</span><span class="o">[</span><span class="mi">2</span><span class="o">]);</span>
<span class="kt">long</span> <span class="n">timestamp</span> <span class="o">=</span> <span class="n">Long</span><span class="o">.</span><span class="na">parseLong</span><span class="o">(</span><span class="n">fields</span><span class="o">[</span><span class="mi">3</span><span class="o">]);</span>
<span class="k">return</span> <span class="k">new</span> <span class="nf">Rating</span><span class="o">(</span><span class="n">userId</span><span class="o">,</span> <span class="n">movieId</span><span class="o">,</span> <span class="n">rating</span><span class="o">,</span> <span class="n">timestamp</span><span class="o">);</span>
<span class="o">}</span>
<span class="o">}</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Rating</span><span class="o">></span> <span class="n">ratingsRDD</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="s">"data/mllib/als/sample_movielens_ratings.txt"</span><span class="o">)</span>
<span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="k">new</span> <span class="n">Function</span><span class="o"><</span><span class="n">String</span><span class="o">,</span> <span class="n">Rating</span><span class="o">>()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">Rating</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">str</span><span class="o">)</span> <span class="o">{</span>
<span class="k">return</span> <span class="n">Rating</span><span class="o">.</span><span class="na">parseRating</span><span class="o">(</span><span class="n">str</span><span class="o">);</span>
<span class="o">}</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">ratings</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">ratingsRDD</span><span class="o">,</span> <span class="n">Rating</span><span class="o">.</span><span class="na">class</span><span class="o">);</span>
<span class="n">DataFrame</span><span class="o">[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.8</span><span class="o">,</span> <span class="mf">0.2</span><span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">training</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="n">DataFrame</span> <span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Build the recommendation model using ALS on the training data</span>
<span class="n">ALS</span> <span class="n">als</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">ALS</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.01</span><span class="o">)</span>
<span class="o">.</span><span class="na">setUserCol</span><span class="o">(</span><span class="s">"userId"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setItemCol</span><span class="o">(</span><span class="s">"movieId"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRatingCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">);</span>
<span class="n">ALSModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">als</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Evaluate the model by computing the RMSE on the test data</span>
<span class="n">DataFrame</span> <span class="n">rawPredictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">test</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">rawPredictions</span>
<span class="o">.</span><span class="na">withColumn</span><span class="o">(</span><span class="s">"rating"</span><span class="o">,</span> <span class="n">rawPredictions</span><span class="o">.</span><span class="na">col</span><span class="o">(</span><span class="s">"rating"</span><span class="o">).</span><span class="na">cast</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">))</span>
<span class="o">.</span><span class="na">withColumn</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="n">rawPredictions</span><span class="o">.</span><span class="na">col</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">).</span><span class="na">cast</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">));</span>
<span class="n">RegressionEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">);</span>
<span class="n">Double</span> <span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Root-mean-square error = "</span> <span class="o">+</span> <span class="n">rmse</span><span class="o">);</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaALSExample.java" in the Spark repo.</small></div>
<p>If the rating matrix is derived from another source of information (i.e. it is
inferred from other signals), you can set <code>implicitPrefs</code> to <code>true</code> to get
better results:</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="n">ALS</span> <span class="n">als</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">ALS</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.01</span><span class="o">)</span>
<span class="o">.</span><span class="na">setImplicitPrefs</span><span class="o">(</span><span class="kc">true</span><span class="o">)</span>
<span class="o">.</span><span class="na">setUserCol</span><span class="o">(</span><span class="s">"userId"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setItemCol</span><span class="o">(</span><span class="s">"movieId"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRatingCol</span><span class="o">(</span><span class="s">"rating"</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p>In the following example, we load rating data from the
<a href="http://grouplens.org/datasets/movielens/">MovieLens dataset</a>, each row
consisting of a user, a movie, a rating and a timestamp.
We then train an ALS model which assumes, by default, that the ratings are
explicit (<code>implicitPrefs</code> is <code>False</code>).
We evaluate the recommendation model by measuring the root-mean-square error of
rating prediction.</p>
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.recommendation.ALS"><code>ALS</code> Python docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">math</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">RegressionEvaluator</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.recommendation</span> <span class="kn">import</span> <span class="n">ALS</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">Row</span>
<span class="n">lines</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/als/sample_movielens_ratings.txt"</span><span class="p">)</span>
<span class="n">parts</span> <span class="o">=</span> <span class="n">lines</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">l</span><span class="p">:</span> <span class="n">l</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">"::"</span><span class="p">))</span>
<span class="n">ratingsRDD</span> <span class="o">=</span> <span class="n">parts</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">:</span> <span class="n">Row</span><span class="p">(</span><span class="n">userId</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">movieId</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span>
<span class="n">rating</span><span class="o">=</span><span class="nb">float</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">2</span><span class="p">]),</span> <span class="n">timestamp</span><span class="o">=</span><span class="nb">long</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">3</span><span class="p">])))</span>
<span class="n">ratings</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">ratingsRDD</span><span class="p">)</span>
<span class="p">(</span><span class="n">training</span><span class="p">,</span> <span class="n">test</span><span class="p">)</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">])</span>
<span class="c"># Build the recommendation model using ALS on the training data</span>
<span class="n">als</span> <span class="o">=</span> <span class="n">ALS</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">userCol</span><span class="o">=</span><span class="s">"userId"</span><span class="p">,</span> <span class="n">itemCol</span><span class="o">=</span><span class="s">"movieId"</span><span class="p">,</span> <span class="n">ratingCol</span><span class="o">=</span><span class="s">"rating"</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">als</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c"># Evaluate the model by computing the RMSE on the test data</span>
<span class="n">rawPredictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
<span class="n">predictions</span> <span class="o">=</span> <span class="n">rawPredictions</span>\
<span class="o">.</span><span class="n">withColumn</span><span class="p">(</span><span class="s">"rating"</span><span class="p">,</span> <span class="n">rawPredictions</span><span class="o">.</span><span class="n">rating</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s">"double"</span><span class="p">))</span>\
<span class="o">.</span><span class="n">withColumn</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">rawPredictions</span><span class="o">.</span><span class="n">prediction</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s">"double"</span><span class="p">))</span>
<span class="n">evaluator</span> <span class="o">=</span>\
<span class="n">RegressionEvaluator</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s">"rmse"</span><span class="p">,</span> <span class="n">labelCol</span><span class="o">=</span><span class="s">"rating"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">)</span>
<span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Root-mean-square error = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">rmse</span><span class="p">))</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/als_example.py" in the Spark repo.</small></div>
<p>If the rating matrix is derived from another source of information (i.e. it is
inferred from other signals), you can set <code>implicitPrefs</code> to <code>True</code> to get
better results:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="n">als</span> <span class="o">=</span> <span class="n">ALS</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">implicitPrefs</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
<span class="n">userCol</span><span class="o">=</span><span class="s">"userId"</span><span class="p">,</span> <span class="n">itemCol</span><span class="o">=</span><span class="s">"movieId"</span><span class="p">,</span> <span class="n">ratingCol</span><span class="o">=</span><span class="s">"rating"</span><span class="p">)</span></code></pre></div>
</div>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>