-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathml-features.html
executable file
·3083 lines (2379 loc) · 320 KB
/
ml-features.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Extracting, transforming and selecting features - spark.ml - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
<b>Extracting, transforming and selecting features</b>
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Extracting, transforming and selecting features - spark.ml</h1>
<p>This section covers algorithms for working with features, roughly divided into these groups:</p>
<ul>
<li>Extraction: Extracting features from “raw” data</li>
<li>Transformation: Scaling, converting, or modifying features</li>
<li>Selection: Selecting a subset from a larger set of features</li>
</ul>
<p><strong>Table of Contents</strong></p>
<ul id="markdown-toc">
<li><a href="#feature-extractors">Feature Extractors</a> <ul>
<li><a href="#tf-idf-hashingtf-and-idf">TF-IDF (HashingTF and IDF)</a></li>
<li><a href="#word2vec">Word2Vec</a></li>
<li><a href="#countvectorizer">CountVectorizer</a></li>
</ul>
</li>
<li><a href="#feature-transformers">Feature Transformers</a> <ul>
<li><a href="#tokenizer">Tokenizer</a></li>
<li><a href="#stopwordsremover">StopWordsRemover</a></li>
<li><a href="#n-gram">$n$-gram</a></li>
<li><a href="#binarizer">Binarizer</a></li>
<li><a href="#pca">PCA</a></li>
<li><a href="#polynomialexpansion">PolynomialExpansion</a></li>
<li><a href="#discrete-cosine-transform-dct">Discrete Cosine Transform (DCT)</a></li>
<li><a href="#stringindexer">StringIndexer</a></li>
<li><a href="#indextostring">IndexToString</a></li>
<li><a href="#onehotencoder">OneHotEncoder</a></li>
<li><a href="#vectorindexer">VectorIndexer</a></li>
<li><a href="#normalizer">Normalizer</a></li>
<li><a href="#standardscaler">StandardScaler</a></li>
<li><a href="#minmaxscaler">MinMaxScaler</a></li>
<li><a href="#bucketizer">Bucketizer</a></li>
<li><a href="#elementwiseproduct">ElementwiseProduct</a></li>
<li><a href="#sqltransformer">SQLTransformer</a></li>
<li><a href="#vectorassembler">VectorAssembler</a></li>
<li><a href="#quantilediscretizer">QuantileDiscretizer</a></li>
</ul>
</li>
<li><a href="#feature-selectors">Feature Selectors</a> <ul>
<li><a href="#vectorslicer">VectorSlicer</a></li>
<li><a href="#rformula">RFormula</a></li>
<li><a href="#chisqselector">ChiSqSelector</a></li>
</ul>
</li>
</ul>
<h1 id="feature-extractors">Feature Extractors</h1>
<h2 id="tf-idf-hashingtf-and-idf">TF-IDF (HashingTF and IDF)</h2>
<p><a href="http://en.wikipedia.org/wiki/Tf%E2%80%93idf">Term Frequency-Inverse Document Frequency (TF-IDF)</a> is a common text pre-processing step. In Spark ML, TF-IDF is separate into two parts: TF (+hashing) and IDF.</p>
<p><strong>TF</strong>: <code>HashingTF</code> is a <code>Transformer</code> which takes sets of terms and converts those sets into fixed-length feature vectors. In text processing, a “set of terms” might be a bag of words.
The algorithm combines Term Frequency (TF) counts with the <a href="http://en.wikipedia.org/wiki/Feature_hashing">hashing trick</a> for dimensionality reduction.</p>
<p><strong>IDF</strong>: <code>IDF</code> is an <code>Estimator</code> which fits on a dataset and produces an <code>IDFModel</code>. The <code>IDFModel</code> takes feature vectors (generally created from <code>HashingTF</code>) and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.</p>
<p>Please refer to the <a href="mllib-feature-extraction.html#tf-idf">MLlib user guide on TF-IDF</a> for more details on Term Frequency and Inverse Document Frequency.</p>
<p>In the following code segment, we start with a set of sentences. We split each sentence into words using <code>Tokenizer</code>. For each sentence (bag of words), we use <code>HashingTF</code> to hash the sentence into a feature vector. We use <code>IDF</code> to rescale the feature vectors; this generally improves performance when using text as features. Our feature vectors could then be passed to a learning algorithm.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.HashingTF">HashingTF Scala docs</a> and
the <a href="api/scala/index.html#org.apache.spark.ml.feature.IDF">IDF Scala docs</a> for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">HashingTF</span><span class="o">,</span> <span class="nc">IDF</span><span class="o">,</span> <span class="nc">Tokenizer</span><span class="o">}</span>
<span class="k">val</span> <span class="n">sentenceData</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"Hi I heard about Spark"</span><span class="o">),</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"I wish Java could use case classes"</span><span class="o">),</span>
<span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="s">"Logistic regression models are neat"</span><span class="o">)</span>
<span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"sentence"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">tokenizer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Tokenizer</span><span class="o">().</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">).</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">wordsData</span> <span class="k">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">sentenceData</span><span class="o">)</span>
<span class="k">val</span> <span class="n">hashingTF</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">HashingTF</span><span class="o">()</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">).</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"rawFeatures"</span><span class="o">).</span><span class="n">setNumFeatures</span><span class="o">(</span><span class="mi">20</span><span class="o">)</span>
<span class="k">val</span> <span class="n">featurizedData</span> <span class="k">=</span> <span class="n">hashingTF</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">wordsData</span><span class="o">)</span>
<span class="k">val</span> <span class="n">idf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IDF</span><span class="o">().</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"rawFeatures"</span><span class="o">).</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">idfModel</span> <span class="k">=</span> <span class="n">idf</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">featurizedData</span><span class="o">)</span>
<span class="k">val</span> <span class="n">rescaledData</span> <span class="k">=</span> <span class="n">idfModel</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">featurizedData</span><span class="o">)</span>
<span class="n">rescaledData</span><span class="o">.</span><span class="n">select</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/TfIdfExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/HashingTF.html">HashingTF Java docs</a> and the
<a href="api/java/org/apache/spark/ml/feature/IDF.html">IDF Java docs</a> for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.HashingTF</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.IDF</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.IDFModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.Tokenizer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SQLContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">jrdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"Hi I heard about Spark"</span><span class="o">),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"I wish Java could use case classes"</span><span class="o">),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="s">"Logistic regression models are neat"</span><span class="o">)</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">sentenceData</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">jrdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="n">Tokenizer</span> <span class="n">tokenizer</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">Tokenizer</span><span class="o">().</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">).</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">wordsData</span> <span class="o">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">sentenceData</span><span class="o">);</span>
<span class="kt">int</span> <span class="n">numFeatures</span> <span class="o">=</span> <span class="mi">20</span><span class="o">;</span>
<span class="n">HashingTF</span> <span class="n">hashingTF</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">HashingTF</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"rawFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setNumFeatures</span><span class="o">(</span><span class="n">numFeatures</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">featurizedData</span> <span class="o">=</span> <span class="n">hashingTF</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">wordsData</span><span class="o">);</span>
<span class="n">IDF</span> <span class="n">idf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">IDF</span><span class="o">().</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"rawFeatures"</span><span class="o">).</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">);</span>
<span class="n">IDFModel</span> <span class="n">idfModel</span> <span class="o">=</span> <span class="n">idf</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">featurizedData</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">rescaledData</span> <span class="o">=</span> <span class="n">idfModel</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">featurizedData</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Row</span> <span class="n">r</span> <span class="o">:</span> <span class="n">rescaledData</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="na">take</span><span class="o">(</span><span class="mi">3</span><span class="o">))</span> <span class="o">{</span>
<span class="n">Vector</span> <span class="n">features</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="na">getAs</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="n">Double</span> <span class="n">label</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="na">getDouble</span><span class="o">(</span><span class="mi">1</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">features</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">label</span><span class="o">);</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaTfIdfExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.HashingTF">HashingTF Python docs</a> and
the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.IDF">IDF Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">HashingTF</span><span class="p">,</span> <span class="n">IDF</span><span class="p">,</span> <span class="n">Tokenizer</span>
<span class="n">sentenceData</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s">"Hi I heard about Spark"</span><span class="p">),</span>
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s">"I wish Java could use case classes"</span><span class="p">),</span>
<span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="s">"Logistic regression models are neat"</span><span class="p">)</span>
<span class="p">],</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"sentence"</span><span class="p">])</span>
<span class="n">tokenizer</span> <span class="o">=</span> <span class="n">Tokenizer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"sentence"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"words"</span><span class="p">)</span>
<span class="n">wordsData</span> <span class="o">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">sentenceData</span><span class="p">)</span>
<span class="n">hashingTF</span> <span class="o">=</span> <span class="n">HashingTF</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"words"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"rawFeatures"</span><span class="p">,</span> <span class="n">numFeatures</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">featurizedData</span> <span class="o">=</span> <span class="n">hashingTF</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">wordsData</span><span class="p">)</span>
<span class="n">idf</span> <span class="o">=</span> <span class="n">IDF</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"rawFeatures"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">)</span>
<span class="n">idfModel</span> <span class="o">=</span> <span class="n">idf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">featurizedData</span><span class="p">)</span>
<span class="n">rescaledData</span> <span class="o">=</span> <span class="n">idfModel</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">featurizedData</span><span class="p">)</span>
<span class="k">for</span> <span class="n">features_label</span> <span class="ow">in</span> <span class="n">rescaledData</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="s">"features"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">)</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="n">features_label</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/tf_idf_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="word2vec">Word2Vec</h2>
<p><code>Word2Vec</code> is an <code>Estimator</code> which takes sequences of words representing documents and trains a
<code>Word2VecModel</code>. The model maps each word to a unique fixed-size vector. The <code>Word2VecModel</code>
transforms each document into a vector using the average of all words in the document; this vector
can then be used for as features for prediction, document similarity calculations, etc.
Please refer to the <a href="mllib-feature-extraction.html#word2vec">MLlib user guide on Word2Vec</a> for more
details.</p>
<p>In the following code segment, we start with a set of documents, each of which is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.Word2Vec">Word2Vec Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.Word2Vec</span>
<span class="c1">// Input data: Each row is a bag of words from a sentence or document.</span>
<span class="k">val</span> <span class="n">documentDF</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="s">"Hi I heard about Spark"</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">),</span>
<span class="s">"I wish Java could use case classes"</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">),</span>
<span class="s">"Logistic regression models are neat"</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">)</span>
<span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="nc">Tuple1</span><span class="o">.</span><span class="n">apply</span><span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"text"</span><span class="o">)</span>
<span class="c1">// Learn a mapping from words to Vectors.</span>
<span class="k">val</span> <span class="n">word2Vec</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Word2Vec</span><span class="o">()</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"text"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"result"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setVectorSize</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
<span class="o">.</span><span class="n">setMinCount</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">word2Vec</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">documentDF</span><span class="o">)</span>
<span class="k">val</span> <span class="n">result</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">documentDF</span><span class="o">)</span>
<span class="n">result</span><span class="o">.</span><span class="n">select</span><span class="o">(</span><span class="s">"result"</span><span class="o">).</span><span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/Word2VecExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/Word2Vec.html">Word2Vec Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.Word2Vec</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.Word2VecModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SQLContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span>
<span class="c1">// Input data: Each row is a bag of words from a sentence or document.</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">jrdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"Hi I heard about Spark"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">))),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"I wish Java could use case classes"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">))),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"Logistic regression models are neat"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">)))</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"text"</span><span class="o">,</span> <span class="k">new</span> <span class="nf">ArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">,</span> <span class="kc">true</span><span class="o">),</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">documentDF</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">jrdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="c1">// Learn a mapping from words to Vectors.</span>
<span class="n">Word2Vec</span> <span class="n">word2Vec</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">Word2Vec</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"text"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"result"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setVectorSize</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMinCount</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="n">Word2VecModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">word2Vec</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">documentDF</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">documentDF</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Row</span> <span class="n">r</span> <span class="o">:</span> <span class="n">result</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"result"</span><span class="o">).</span><span class="na">take</span><span class="o">(</span><span class="mi">3</span><span class="o">))</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">r</span><span class="o">);</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaWord2VecExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.Word2Vec">Word2Vec Python docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">Word2Vec</span>
<span class="c"># Input data: Each row is a bag of words from a sentence or document.</span>
<span class="n">documentDF</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="s">"Hi I heard about Spark"</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">" "</span><span class="p">),</span> <span class="p">),</span>
<span class="p">(</span><span class="s">"I wish Java could use case classes"</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">" "</span><span class="p">),</span> <span class="p">),</span>
<span class="p">(</span><span class="s">"Logistic regression models are neat"</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">" "</span><span class="p">),</span> <span class="p">)</span>
<span class="p">],</span> <span class="p">[</span><span class="s">"text"</span><span class="p">])</span>
<span class="c"># Learn a mapping from words to Vectors.</span>
<span class="n">word2Vec</span> <span class="o">=</span> <span class="n">Word2Vec</span><span class="p">(</span><span class="n">vectorSize</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">minCount</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">inputCol</span><span class="o">=</span><span class="s">"text"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"result"</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">word2Vec</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">documentDF</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">documentDF</span><span class="p">)</span>
<span class="k">for</span> <span class="n">feature</span> <span class="ow">in</span> <span class="n">result</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="s">"result"</span><span class="p">)</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="n">feature</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/word2vec_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="countvectorizer">CountVectorizer</h2>
<p><code>CountVectorizer</code> and <code>CountVectorizerModel</code> aim to help convert a collection of text documents
to vectors of token counts. When an a-priori dictionary is not available, <code>CountVectorizer</code> can
be used as an <code>Estimator</code> to extract the vocabulary and generates a <code>CountVectorizerModel</code>. The
model produces sparse representations for the documents over the vocabulary, which can then be
passed to other algorithms like LDA.</p>
<p>During the fitting process, <code>CountVectorizer</code> will select the top <code>vocabSize</code> words ordered by
term frequency across the corpus. An optional parameter “minDF” also affect the fitting process
by specifying the minimum number (or fraction if < 1.0) of documents a term must appear in to be
included in the vocabulary.</p>
<p><strong>Examples</strong></p>
<p>Assume that we have the following DataFrame with columns <code>id</code> and <code>texts</code>:</p>
<pre><code> id | texts
----|----------
0 | Array("a", "b", "c")
1 | Array("a", "b", "b", "c", "a")
</code></pre>
<p>each row in<code>texts</code> is a document of type Array[String].
Invoking fit of <code>CountVectorizer</code> produces a <code>CountVectorizerModel</code> with vocabulary (a, b, c),
then the output column “vector” after transformation contains:</p>
<pre><code> id | texts | vector
----|---------------------------------|---------------
0 | Array("a", "b", "c") | (3,[0,1,2],[1.0,1.0,1.0])
1 | Array("a", "b", "b", "c", "a") | (3,[0,1,2],[2.0,2.0,1.0])
</code></pre>
<p>each vector represents the token counts of the document over the vocabulary.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.CountVectorizer">CountVectorizer Scala docs</a>
and the <a href="api/scala/index.html#org.apache.spark.ml.feature.CountVectorizerModel">CountVectorizerModel Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">CountVectorizer</span><span class="o">,</span> <span class="nc">CountVectorizerModel</span><span class="o">}</span>
<span class="k">val</span> <span class="n">df</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">)),</span>
<span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">,</span> <span class="s">"a"</span><span class="o">))</span>
<span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"id"</span><span class="o">,</span> <span class="s">"words"</span><span class="o">)</span>
<span class="c1">// fit a CountVectorizerModel from the corpus</span>
<span class="k">val</span> <span class="n">cvModel</span><span class="k">:</span> <span class="kt">CountVectorizerModel</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">CountVectorizer</span><span class="o">()</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setVocabSize</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
<span class="o">.</span><span class="n">setMinDF</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span>
<span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">df</span><span class="o">)</span>
<span class="c1">// alternatively, define CountVectorizerModel with a-priori vocabulary</span>
<span class="k">val</span> <span class="n">cvm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">CountVectorizerModel</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">))</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="n">cvModel</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">df</span><span class="o">).</span><span class="n">select</span><span class="o">(</span><span class="s">"features"</span><span class="o">).</span><span class="n">show</span><span class="o">()</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/CountVectorizerExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/CountVectorizer.html">CountVectorizer Java docs</a>
and the <a href="api/java/org/apache/spark/ml/feature/CountVectorizerModel.html">CountVectorizerModel Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.CountVectorizer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.CountVectorizerModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SQLContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span>
<span class="c1">// Input data: Each row is a bag of words from a sentence or document.</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">jrdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">)),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">,</span> <span class="s">"a"</span><span class="o">))</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span> <span class="o">[]</span> <span class="o">{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"text"</span><span class="o">,</span> <span class="k">new</span> <span class="nf">ArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">,</span> <span class="kc">true</span><span class="o">),</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">df</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">jrdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="c1">// fit a CountVectorizerModel from the corpus</span>
<span class="n">CountVectorizerModel</span> <span class="n">cvModel</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">CountVectorizer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"text"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"feature"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setVocabSize</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMinDF</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">df</span><span class="o">);</span>
<span class="c1">// alternatively, define CountVectorizerModel with a-priori vocabulary</span>
<span class="n">CountVectorizerModel</span> <span class="n">cvm</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">CountVectorizerModel</span><span class="o">(</span><span class="k">new</span> <span class="n">String</span><span class="o">[]{</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">,</span> <span class="s">"c"</span><span class="o">})</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"text"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"feature"</span><span class="o">);</span>
<span class="n">cvModel</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">df</span><span class="o">).</span><span class="na">show</span><span class="o">();</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaCountVectorizerExample.java" in the Spark repo.</small></div>
</div>
</div>
<h1 id="feature-transformers">Feature Transformers</h1>
<h2 id="tokenizer">Tokenizer</h2>
<p><a href="http://en.wikipedia.org/wiki/Lexical_analysis#Tokenization">Tokenization</a> is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple <a href="api/scala/index.html#org.apache.spark.ml.feature.Tokenizer">Tokenizer</a> class provides this functionality. The example below shows how to split sentences into sequences of words.</p>
<p><a href="api/scala/index.html#org.apache.spark.ml.feature.RegexTokenizer">RegexTokenizer</a> allows more
advanced tokenization based on regular expression (regex) matching.
By default, the parameter “pattern” (regex, default: \s+) is used as delimiters to split the input text.
Alternatively, users can set parameter “gaps” to false indicating the regex “pattern” denotes
“tokens” rather than splitting gaps, and find all matching occurrences as the tokenization result.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.Tokenizer">Tokenizer Scala docs</a>
and the <a href="api/scala/index.html#org.apache.spark.ml.feature.Tokenizer">RegexTokenizer Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">RegexTokenizer</span><span class="o">,</span> <span class="nc">Tokenizer</span><span class="o">}</span>
<span class="k">val</span> <span class="n">sentenceDataFrame</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"Hi I heard about Spark"</span><span class="o">),</span>
<span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="s">"I wish Java could use case classes"</span><span class="o">),</span>
<span class="o">(</span><span class="mi">2</span><span class="o">,</span> <span class="s">"Logistic,regression,models,are,neat"</span><span class="o">)</span>
<span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"sentence"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">tokenizer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Tokenizer</span><span class="o">().</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">).</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">regexTokenizer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegexTokenizer</span><span class="o">()</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setPattern</span><span class="o">(</span><span class="s">"\\W"</span><span class="o">)</span> <span class="c1">// alternatively .setPattern("\\w+").setGaps(false)</span>
<span class="k">val</span> <span class="n">tokenized</span> <span class="k">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">sentenceDataFrame</span><span class="o">)</span>
<span class="n">tokenized</span><span class="o">.</span><span class="n">select</span><span class="o">(</span><span class="s">"words"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
<span class="k">val</span> <span class="n">regexTokenized</span> <span class="k">=</span> <span class="n">regexTokenizer</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">sentenceDataFrame</span><span class="o">)</span>
<span class="n">regexTokenized</span><span class="o">.</span><span class="n">select</span><span class="o">(</span><span class="s">"words"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/TokenizerExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/Tokenizer.html">Tokenizer Java docs</a>
and the <a href="api/java/org/apache/spark/ml/feature/RegexTokenizer.html">RegexTokenizer Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.RegexTokenizer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.Tokenizer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">jrdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="s">"Hi I heard about Spark"</span><span class="o">),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="s">"I wish Java could use case classes"</span><span class="o">),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mi">2</span><span class="o">,</span> <span class="s">"Logistic,regression,models,are,neat"</span><span class="o">)</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">IntegerType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">sentenceDataFrame</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">jrdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="n">Tokenizer</span> <span class="n">tokenizer</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">Tokenizer</span><span class="o">().</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">).</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">wordsDataFrame</span> <span class="o">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">sentenceDataFrame</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Row</span> <span class="n">r</span> <span class="o">:</span> <span class="n">wordsDataFrame</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"words"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span> <span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">))</span> <span class="o">{</span>
<span class="n">java</span><span class="o">.</span><span class="na">util</span><span class="o">.</span><span class="na">List</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">words</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="na">getList</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">String</span> <span class="n">word</span> <span class="o">:</span> <span class="n">words</span><span class="o">)</span> <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="n">word</span> <span class="o">+</span> <span class="s">" "</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">();</span>
<span class="o">}</span>
<span class="n">RegexTokenizer</span> <span class="n">regexTokenizer</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RegexTokenizer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"sentence"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPattern</span><span class="o">(</span><span class="s">"\\W"</span><span class="o">);</span> <span class="c1">// alternatively .setPattern("\\w+").setGaps(false);</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaTokenizerExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.Tokenizer">Tokenizer Python docs</a> and
the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.RegexTokenizer">RegexTokenizer Python docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">Tokenizer</span><span class="p">,</span> <span class="n">RegexTokenizer</span>
<span class="n">sentenceDataFrame</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s">"Hi I heard about Spark"</span><span class="p">),</span>
<span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="s">"I wish Java could use case classes"</span><span class="p">),</span>
<span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s">"Logistic,regression,models,are,neat"</span><span class="p">)</span>
<span class="p">],</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"sentence"</span><span class="p">])</span>
<span class="n">tokenizer</span> <span class="o">=</span> <span class="n">Tokenizer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"sentence"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"words"</span><span class="p">)</span>
<span class="n">wordsDataFrame</span> <span class="o">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">sentenceDataFrame</span><span class="p">)</span>
<span class="k">for</span> <span class="n">words_label</span> <span class="ow">in</span> <span class="n">wordsDataFrame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="s">"words"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">)</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="n">words_label</span><span class="p">)</span>
<span class="n">regexTokenizer</span> <span class="o">=</span> <span class="n">RegexTokenizer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"sentence"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"words"</span><span class="p">,</span> <span class="n">pattern</span><span class="o">=</span><span class="s">"</span><span class="se">\\</span><span class="s">W"</span><span class="p">)</span>
<span class="c"># alternatively, pattern="\\w+", gaps(False)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/tokenizer_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="stopwordsremover">StopWordsRemover</h2>
<p><a href="https://en.wikipedia.org/wiki/Stop_words">Stop words</a> are words which
should be excluded from the input, typically because the words appear
frequently and don’t carry as much meaning.</p>
<p><code>StopWordsRemover</code> takes as input a sequence of strings (e.g. the output
of a <a href="ml-features.html#tokenizer">Tokenizer</a>) and drops all the stop
words from the input sequences. The list of stopwords is specified by
the <code>stopWords</code> parameter. We provide <a href="http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words">a list of stop
words</a> by
default, accessible by calling <code>getStopWords</code> on a newly instantiated
<code>StopWordsRemover</code> instance. A boolean parameter <code>caseSensitive</code> indicates
if the matches should be case sensitive (false by default).</p>
<p><strong>Examples</strong></p>
<p>Assume that we have the following DataFrame with columns <code>id</code> and <code>raw</code>:</p>
<pre><code> id | raw
----|----------
0 | [I, saw, the, red, baloon]
1 | [Mary, had, a, little, lamb]
</code></pre>
<p>Applying <code>StopWordsRemover</code> with <code>raw</code> as the input column and <code>filtered</code> as the output
column, we should get the following:</p>
<pre><code> id | raw | filtered
----|-----------------------------|--------------------
0 | [I, saw, the, red, baloon] | [saw, red, baloon]
1 | [Mary, had, a, little, lamb]|[Mary, little, lamb]
</code></pre>
<p>In <code>filtered</code>, the stop words “I”, “the”, “had”, and “a” have been
filtered out.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.StopWordsRemover">StopWordsRemover Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.StopWordsRemover</span>
<span class="k">val</span> <span class="n">remover</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StopWordsRemover</span><span class="o">()</span>
<span class="o">.</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"raw"</span><span class="o">)</span>
<span class="o">.</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"filtered"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">dataSet</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">(</span><span class="s">"I"</span><span class="o">,</span> <span class="s">"saw"</span><span class="o">,</span> <span class="s">"the"</span><span class="o">,</span> <span class="s">"red"</span><span class="o">,</span> <span class="s">"baloon"</span><span class="o">)),</span>
<span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">(</span><span class="s">"Mary"</span><span class="o">,</span> <span class="s">"had"</span><span class="o">,</span> <span class="s">"a"</span><span class="o">,</span> <span class="s">"little"</span><span class="o">,</span> <span class="s">"lamb"</span><span class="o">))</span>
<span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"id"</span><span class="o">,</span> <span class="s">"raw"</span><span class="o">)</span>
<span class="n">remover</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataSet</span><span class="o">).</span><span class="n">show</span><span class="o">()</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/StopWordsRemoverExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/StopWordsRemover.html">StopWordsRemover Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.StopWordsRemover</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span>
<span class="n">StopWordsRemover</span> <span class="n">remover</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StopWordsRemover</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"raw"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"filtered"</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">rdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"I"</span><span class="o">,</span> <span class="s">"saw"</span><span class="o">,</span> <span class="s">"the"</span><span class="o">,</span> <span class="s">"red"</span><span class="o">,</span> <span class="s">"baloon"</span><span class="o">)),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"Mary"</span><span class="o">,</span> <span class="s">"had"</span><span class="o">,</span> <span class="s">"a"</span><span class="o">,</span> <span class="s">"little"</span><span class="o">,</span> <span class="s">"lamb"</span><span class="o">))</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span>
<span class="s">"raw"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">createArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">),</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">jsql</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">rdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="n">remover</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">).</span><span class="na">show</span><span class="o">();</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaStopWordsRemoverExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.StopWordsRemover">StopWordsRemover Python docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">StopWordsRemover</span>
<span class="n">sentenceData</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="s">"I"</span><span class="p">,</span> <span class="s">"saw"</span><span class="p">,</span> <span class="s">"the"</span><span class="p">,</span> <span class="s">"red"</span><span class="p">,</span> <span class="s">"baloon"</span><span class="p">]),</span>
<span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">[</span><span class="s">"Mary"</span><span class="p">,</span> <span class="s">"had"</span><span class="p">,</span> <span class="s">"a"</span><span class="p">,</span> <span class="s">"little"</span><span class="p">,</span> <span class="s">"lamb"</span><span class="p">])</span>
<span class="p">],</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"raw"</span><span class="p">])</span>
<span class="n">remover</span> <span class="o">=</span> <span class="n">StopWordsRemover</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"raw"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"filtered"</span><span class="p">)</span>
<span class="n">remover</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">sentenceData</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/stopwords_remover_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="n-gram">$n$-gram</h2>
<p>An <a href="https://en.wikipedia.org/wiki/N-gram">n-gram</a> is a sequence of $n$ tokens (typically words) for some integer $n$. The <code>NGram</code> class can be used to transform input features into $n$-grams.</p>
<p><code>NGram</code> takes as input a sequence of strings (e.g. the output of a <a href="ml-features.html#tokenizer">Tokenizer</a>). The parameter <code>n</code> is used to determine the number of terms in each $n$-gram. The output will consist of a sequence of $n$-grams where each $n$-gram is represented by a space-delimited string of $n$ consecutive words. If the input sequence contains fewer than <code>n</code> strings, no output is produced.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.feature.NGram">NGram Scala docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.NGram</span>
<span class="k">val</span> <span class="n">wordDataFrame</span> <span class="k">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="s">"Hi"</span><span class="o">,</span> <span class="s">"I"</span><span class="o">,</span> <span class="s">"heard"</span><span class="o">,</span> <span class="s">"about"</span><span class="o">,</span> <span class="s">"Spark"</span><span class="o">)),</span>
<span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="s">"I"</span><span class="o">,</span> <span class="s">"wish"</span><span class="o">,</span> <span class="s">"Java"</span><span class="o">,</span> <span class="s">"could"</span><span class="o">,</span> <span class="s">"use"</span><span class="o">,</span> <span class="s">"case"</span><span class="o">,</span> <span class="s">"classes"</span><span class="o">)),</span>
<span class="o">(</span><span class="mi">2</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="s">"Logistic"</span><span class="o">,</span> <span class="s">"regression"</span><span class="o">,</span> <span class="s">"models"</span><span class="o">,</span> <span class="s">"are"</span><span class="o">,</span> <span class="s">"neat"</span><span class="o">))</span>
<span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"words"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">ngram</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">NGram</span><span class="o">().</span><span class="n">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">).</span><span class="n">setOutputCol</span><span class="o">(</span><span class="s">"ngrams"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">ngramDataFrame</span> <span class="k">=</span> <span class="n">ngram</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">wordDataFrame</span><span class="o">)</span>
<span class="n">ngramDataFrame</span><span class="o">.</span><span class="n">take</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">getAs</span><span class="o">[</span><span class="kt">Stream</span><span class="o">[</span><span class="kt">String</span><span class="o">]](</span><span class="s">"ngrams"</span><span class="o">).</span><span class="n">toList</span><span class="o">).</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/NGramExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/feature/NGram.html">NGram Java docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.NGram</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">jrdd</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"Hi"</span><span class="o">,</span> <span class="s">"I"</span><span class="o">,</span> <span class="s">"heard"</span><span class="o">,</span> <span class="s">"about"</span><span class="o">,</span> <span class="s">"Spark"</span><span class="o">)),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"I"</span><span class="o">,</span> <span class="s">"wish"</span><span class="o">,</span> <span class="s">"Java"</span><span class="o">,</span> <span class="s">"could"</span><span class="o">,</span> <span class="s">"use"</span><span class="o">,</span> <span class="s">"case"</span><span class="o">,</span> <span class="s">"classes"</span><span class="o">)),</span>
<span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"Logistic"</span><span class="o">,</span> <span class="s">"regression"</span><span class="o">,</span> <span class="s">"models"</span><span class="o">,</span> <span class="s">"are"</span><span class="o">,</span> <span class="s">"neat"</span><span class="o">))</span>
<span class="o">));</span>
<span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span>
<span class="s">"words"</span><span class="o">,</span> <span class="n">DataTypes</span><span class="o">.</span><span class="na">createArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">),</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="n">DataFrame</span> <span class="n">wordDataFrame</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">jrdd</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="n">NGram</span> <span class="n">ngramTransformer</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">NGram</span><span class="o">().</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"words"</span><span class="o">).</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"ngrams"</span><span class="o">);</span>
<span class="n">DataFrame</span> <span class="n">ngramDataFrame</span> <span class="o">=</span> <span class="n">ngramTransformer</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">wordDataFrame</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Row</span> <span class="n">r</span> <span class="o">:</span> <span class="n">ngramDataFrame</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"ngrams"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="na">take</span><span class="o">(</span><span class="mi">3</span><span class="o">))</span> <span class="o">{</span>
<span class="n">java</span><span class="o">.</span><span class="na">util</span><span class="o">.</span><span class="na">List</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">ngrams</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="na">getList</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">String</span> <span class="n">ngram</span> <span class="o">:</span> <span class="n">ngrams</span><span class="o">)</span> <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="n">ngram</span> <span class="o">+</span> <span class="s">" --- "</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">();</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaNGramExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.feature.NGram">NGram Python docs</a>
for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">NGram</span>
<span class="n">wordDataFrame</span> <span class="o">=</span> <span class="n">sqlContext</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="s">"Hi"</span><span class="p">,</span> <span class="s">"I"</span><span class="p">,</span> <span class="s">"heard"</span><span class="p">,</span> <span class="s">"about"</span><span class="p">,</span> <span class="s">"Spark"</span><span class="p">]),</span>
<span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">[</span><span class="s">"I"</span><span class="p">,</span> <span class="s">"wish"</span><span class="p">,</span> <span class="s">"Java"</span><span class="p">,</span> <span class="s">"could"</span><span class="p">,</span> <span class="s">"use"</span><span class="p">,</span> <span class="s">"case"</span><span class="p">,</span> <span class="s">"classes"</span><span class="p">]),</span>
<span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="s">"Logistic"</span><span class="p">,</span> <span class="s">"regression"</span><span class="p">,</span> <span class="s">"models"</span><span class="p">,</span> <span class="s">"are"</span><span class="p">,</span> <span class="s">"neat"</span><span class="p">])</span>
<span class="p">],</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"words"</span><span class="p">])</span>
<span class="n">ngram</span> <span class="o">=</span> <span class="n">NGram</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"words"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"ngrams"</span><span class="p">)</span>
<span class="n">ngramDataFrame</span> <span class="o">=</span> <span class="n">ngram</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">wordDataFrame</span><span class="p">)</span>
<span class="k">for</span> <span class="n">ngrams_label</span> <span class="ow">in</span> <span class="n">ngramDataFrame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="s">"ngrams"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">)</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="n">ngrams_label</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/n_gram_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="binarizer">Binarizer</h2>