-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmllib-dimensionality-reduction.html
executable file
·602 lines (432 loc) · 38.3 KB
/
mllib-dimensionality-reduction.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Dimensionality Reduction - spark.mllib - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
<b>Dimensionality reduction</b>
</a>
</li>
<ul>
<li>
<a href="mllib-dimensionality-reduction.html#singular-value-decomposition-svd">
singular value decomposition (SVD)
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html#principal-component-analysis-pca">
principal component analysis (PCA)
</a>
</li>
</ul>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Dimensionality Reduction - spark.mllib</h1>
<ul id="markdown-toc">
<li><a href="#singular-value-decomposition-svd">Singular value decomposition (SVD)</a> <ul>
<li><a href="#performance">Performance</a></li>
<li><a href="#svd-example">SVD Example</a></li>
</ul>
</li>
<li><a href="#principal-component-analysis-pca">Principal component analysis (PCA)</a></li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Dimensionality_reduction">Dimensionality reduction</a> is the process
of reducing the number of variables under consideration.
It can be used to extract latent features from raw and noisy features
or compress data while maintaining the structure.
<code>spark.mllib</code> provides support for dimensionality reduction on the <a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class.</p>
<h2 id="singular-value-decomposition-svd">Singular value decomposition (SVD)</h2>
<p><a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Singular value decomposition (SVD)</a>
factorizes a matrix into three matrices: $U$, $\Sigma$, and $V$ such that</p>
<p><code>\[
A = U \Sigma V^T,
\]</code></p>
<p>where </p>
<ul>
<li>$U$ is an orthonormal matrix, whose columns are called left singular vectors,</li>
<li>$\Sigma$ is a diagonal matrix with non-negative diagonals in descending order,
whose diagonals are called singular values,</li>
<li>$V$ is an orthonormal matrix, whose columns are called right singular vectors.</li>
</ul>
<p>For large matrices, usually we don’t need the complete factorization but only the top singular
values and its associated singular vectors. This can save storage, de-noise
and recover the low-rank structure of the matrix.</p>
<p>If we keep the top $k$ singular values, then the dimensions of the resulting low-rank matrix will be:</p>
<ul>
<li><code>$U$</code>: <code>$m \times k$</code>,</li>
<li><code>$\Sigma$</code>: <code>$k \times k$</code>,</li>
<li><code>$V$</code>: <code>$n \times k$</code>.</li>
</ul>
<h3 id="performance">Performance</h3>
<p>We assume $n$ is smaller than $m$. The singular values and the right singular vectors are derived
from the eigenvalues and the eigenvectors of the Gramian matrix $A^T A$. The matrix
storing the left singular vectors $U$, is computed via matrix multiplication as
$U = A (V S^{-1})$, if requested by the user via the computeU parameter.
The actual method to use is determined automatically based on the computational cost:</p>
<ul>
<li>If $n$ is small ($n < 100$) or $k$ is large compared with $n$ ($k > n / 2$), we compute the Gramian matrix
first and then compute its top eigenvalues and eigenvectors locally on the driver.
This requires a single pass with $O(n^2)$ storage on each executor and on the driver, and
$O(n^2 k)$ time on the driver.</li>
<li>Otherwise, we compute $(A^T A) v$ in a distributive way and send it to
<a href="http://www.caam.rice.edu/software/ARPACK/">ARPACK</a> to
compute $(A^T A)$’s top eigenvalues and eigenvectors on the driver node. This requires $O(k)$
passes, $O(n)$ storage on each executor, and $O(n k)$ storage on the driver.</li>
</ul>
<h3 id="svd-example">SVD Example</h3>
<p><code>spark.mllib</code> provides SVD functionality to row-oriented matrices, provided in the
<a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class. </p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.linalg.SingularValueDecomposition"><code>SingularValueDecomposition</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">(</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">1</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))</span>
<span class="k">val</span> <span class="n">dataRDD</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="mi">2</span><span class="o">)</span>
<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">dataRDD</span><span class="o">)</span>
<span class="c1">// Compute the top 5 singular values and corresponding singular vectors.</span>
<span class="k">val</span> <span class="n">svd</span><span class="k">:</span> <span class="kt">SingularValueDecomposition</span><span class="o">[</span><span class="kt">RowMatrix</span>, <span class="kt">Matrix</span><span class="o">]</span> <span class="k">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">computeSVD</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="n">computeU</span> <span class="k">=</span> <span class="kc">true</span><span class="o">)</span>
<span class="k">val</span> <span class="n">U</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">U</span> <span class="c1">// The U factor is a RowMatrix.</span>
<span class="k">val</span> <span class="n">s</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">s</span> <span class="c1">// The singular values are stored in a local dense vector.</span>
<span class="k">val</span> <span class="n">V</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="n">V</span> <span class="c1">// The V factor is a local dense matrix.</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/SVDExample.scala" in the Spark repo.</small></div>
<p>The same code applies to <code>IndexedRowMatrix</code> if <code>U</code> is defined as an
<code>IndexedRowMatrix</code>.</p>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/SingularValueDecomposition.html"><code>SingularValueDecomposition</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.LinkedList</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[][]</span> <span class="n">array</span> <span class="o">=</span> <span class="o">{{</span><span class="mf">1.12</span><span class="o">,</span> <span class="mf">2.05</span><span class="o">,</span> <span class="mf">3.12</span><span class="o">},</span> <span class="o">{</span><span class="mf">5.56</span><span class="o">,</span> <span class="mf">6.28</span><span class="o">,</span> <span class="mf">8.94</span><span class="o">},</span> <span class="o">{</span><span class="mf">10.2</span><span class="o">,</span> <span class="mf">8.0</span><span class="o">,</span> <span class="mf">20.5</span><span class="o">}};</span>
<span class="n">LinkedList</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">rowsList</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LinkedList</span><span class="o"><</span><span class="n">Vector</span><span class="o">>();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">array</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span>
<span class="n">Vector</span> <span class="n">currentRow</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">array</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
<span class="n">rowsList</span><span class="o">.</span><span class="na">add</span><span class="o">(</span><span class="n">currentRow</span><span class="o">);</span>
<span class="o">}</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">rows</span> <span class="o">=</span> <span class="n">JavaSparkContext</span><span class="o">.</span><span class="na">fromSparkContext</span><span class="o">(</span><span class="n">sc</span><span class="o">).</span><span class="na">parallelize</span><span class="o">(</span><span class="n">rowsList</span><span class="o">);</span>
<span class="c1">// Create a RowMatrix from JavaRDD<Vector>.</span>
<span class="n">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="c1">// Compute the top 3 singular values and corresponding singular vectors.</span>
<span class="n">SingularValueDecomposition</span><span class="o"><</span><span class="n">RowMatrix</span><span class="o">,</span> <span class="n">Matrix</span><span class="o">></span> <span class="n">svd</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computeSVD</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="kc">true</span><span class="o">,</span> <span class="mf">1.0</span><span class="n">E</span><span class="o">-</span><span class="mi">9</span><span class="n">d</span><span class="o">);</span>
<span class="n">RowMatrix</span> <span class="n">U</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">U</span><span class="o">();</span>
<span class="n">Vector</span> <span class="n">s</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">s</span><span class="o">();</span>
<span class="n">Matrix</span> <span class="n">V</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">V</span><span class="o">();</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaSVDExample.java" in the Spark repo.</small></div>
<p>The same code applies to <code>IndexedRowMatrix</code> if <code>U</code> is defined as an
<code>IndexedRowMatrix</code>.</p>
<p>In order to run the above application, follow the instructions
provided in the <a href="quick-start.html#self-contained-applications">Self-Contained
Applications</a> section of the Spark
quick-start guide. Be sure to also include <em>spark-mllib</em> to your build file as
a dependency.</p>
</div>
</div>
<h2 id="principal-component-analysis-pca">Principal component analysis (PCA)</h2>
<p><a href="http://en.wikipedia.org/wiki/Principal_component_analysis">Principal component analysis (PCA)</a> is a
statistical method to find a rotation such that the first coordinate has the largest variance
possible, and each succeeding coordinate in turn has the largest variance possible. The columns of
the rotation matrix are called principal components. PCA is used widely in dimensionality reduction.</p>
<p><code>spark.mllib</code> supports PCA for tall-and-skinny matrices stored in row-oriented format and any Vectors.</p>
<div class="codetabs">
<div data-lang="scala">
<p>The following code demonstrates how to compute principal components on a <code>RowMatrix</code>
and use them to project the vectors into a low-dimensional space.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix"><code>RowMatrix</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">(</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">1</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))</span>
<span class="k">val</span> <span class="n">dataRDD</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="mi">2</span><span class="o">)</span>
<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">dataRDD</span><span class="o">)</span>
<span class="c1">// Compute the top 4 principal components.</span>
<span class="c1">// Principal components are stored in a local dense matrix.</span>
<span class="k">val</span> <span class="n">pc</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">computePrincipalComponents</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="c1">// Project the rows to the linear space spanned by the top 4 principal components.</span>
<span class="k">val</span> <span class="n">projected</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="n">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PCAOnRowMatrixExample.scala" in the Spark repo.</small></div>
<p>The following code demonstrates how to compute principal components on source vectors
and use them to project the vectors into a low-dimensional space while keeping associated labels:</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.feature.PCA"><code>PCA</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.feature.PCA</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.RDD</span>
<span class="k">val</span> <span class="n">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">))))</span>
<span class="c1">// Compute the top 5 principal components.</span>
<span class="k">val</span> <span class="n">pca</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PCA</span><span class="o">(</span><span class="mi">5</span><span class="o">).</span><span class="n">fit</span><span class="o">(</span><span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">features</span><span class="o">))</span>
<span class="c1">// Project vectors to the linear space spanned by the top 5 principal</span>
<span class="c1">// components, keeping the label</span>
<span class="k">val</span> <span class="n">projected</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">p</span> <span class="k">=></span> <span class="n">p</span><span class="o">.</span><span class="n">copy</span><span class="o">(</span><span class="n">features</span> <span class="k">=</span> <span class="n">pca</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">p</span><span class="o">.</span><span class="n">features</span><span class="o">)))</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PCAOnSourceVectorExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>The following code demonstrates how to compute principal components on a <code>RowMatrix</code>
and use them to project the vectors into a low-dimensional space.
The number of columns should be small, e.g, less than 1000.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code>RowMatrix</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.LinkedList</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[][]</span> <span class="n">array</span> <span class="o">=</span> <span class="o">{{</span><span class="mf">1.12</span><span class="o">,</span> <span class="mf">2.05</span><span class="o">,</span> <span class="mf">3.12</span><span class="o">},</span> <span class="o">{</span><span class="mf">5.56</span><span class="o">,</span> <span class="mf">6.28</span><span class="o">,</span> <span class="mf">8.94</span><span class="o">},</span> <span class="o">{</span><span class="mf">10.2</span><span class="o">,</span> <span class="mf">8.0</span><span class="o">,</span> <span class="mf">20.5</span><span class="o">}};</span>
<span class="n">LinkedList</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">rowsList</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LinkedList</span><span class="o"><</span><span class="n">Vector</span><span class="o">>();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">array</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span>
<span class="n">Vector</span> <span class="n">currentRow</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">array</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span>
<span class="n">rowsList</span><span class="o">.</span><span class="na">add</span><span class="o">(</span><span class="n">currentRow</span><span class="o">);</span>
<span class="o">}</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">rows</span> <span class="o">=</span> <span class="n">JavaSparkContext</span><span class="o">.</span><span class="na">fromSparkContext</span><span class="o">(</span><span class="n">sc</span><span class="o">).</span><span class="na">parallelize</span><span class="o">(</span><span class="n">rowsList</span><span class="o">);</span>
<span class="c1">// Create a RowMatrix from JavaRDD<Vector>.</span>
<span class="n">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="c1">// Compute the top 3 principal components.</span>
<span class="n">Matrix</span> <span class="n">pc</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computePrincipalComponents</span><span class="o">(</span><span class="mi">3</span><span class="o">);</span>
<span class="n">RowMatrix</span> <span class="n">projected</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">);</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaPCAExample.java" in the Spark repo.</small></div>
</div>
</div>
<p>In order to run the above application, follow the instructions
provided in the <a href="quick-start.html#self-contained-applications">Self-Contained Applications</a>
section of the Spark
quick-start guide. Be sure to also include <em>spark-mllib</em> to your build file as
a dependency.</p>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>