-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmllib-frequent-pattern-mining.html
executable file
·689 lines (501 loc) · 47.4 KB
/
mllib-frequent-pattern-mining.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Frequent Pattern Mining - spark.mllib - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
<b>Frequent pattern mining</b>
</a>
</li>
<ul>
<li>
<a href="mllib-frequent-pattern-mining.html#fp-growth">
FP-growth
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html#association-rules">
association rules
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html#prefix-span">
PrefixSpan
</a>
</li>
</ul>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Frequent Pattern Mining - spark.mllib</h1>
<p>Mining frequent items, itemsets, subsequences, or other substructures is usually among the
first steps to analyze a large-scale dataset, which has been an active research topic in
data mining for years.
We refer users to Wikipedia’s <a href="http://en.wikipedia.org/wiki/Association_rule_learning">association rule learning</a>
for more information.
<code>spark.mllib</code> provides a parallel implementation of FP-growth,
a popular algorithm to mining frequent itemsets.</p>
<h2 id="fp-growth">FP-growth</h2>
<p>The FP-growth algorithm is described in the paper
<a href="http://dx.doi.org/10.1145/335191.335372">Han et al., Mining frequent patterns without candidate generation</a>,
where “FP” stands for frequent pattern.
Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items.
Different from <a href="http://en.wikipedia.org/wiki/Apriori_algorithm">Apriori-like</a> algorithms designed for the same purpose,
the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets
explicitly, which are usually expensive to generate.
After the second step, the frequent itemsets can be extracted from the FP-tree.
In <code>spark.mllib</code>, we implemented a parallel version of FP-growth called PFP,
as described in <a href="http://dx.doi.org/10.1145/1454008.1454027">Li et al., PFP: Parallel FP-growth for query recommendation</a>.
PFP distributes the work of growing FP-trees based on the suffices of transactions,
and hence more scalable than a single-machine implementation.
We refer users to the papers for more details.</p>
<p><code>spark.mllib</code>’s FP-growth implementation takes the following (hyper-)parameters:</p>
<ul>
<li><code>minSupport</code>: the minimum support for an itemset to be identified as frequent.
For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6.</li>
<li><code>numPartitions</code>: the number of partitions used to distribute the work.</li>
</ul>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth"><code>FPGrowth</code></a> implements the
FP-growth algorithm.
It take a <code>RDD</code> of transactions, where each transaction is an <code>Array</code> of items of a generic type.
Calling <code>FPGrowth.run</code> with transactions returns an
<a href="api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowthModel"><code>FPGrowthModel</code></a>
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see <a href="mllib-frequent-pattern-mining.html#association-rules">Association
Rules</a> for
details) from <code>transactions</code>.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth"><code>FPGrowth</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowth</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.RDD</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">"data/mllib/sample_fpgrowth.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">transactions</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Array</span><span class="o">[</span><span class="kt">String</span><span class="o">]]</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=></span> <span class="n">s</span><span class="o">.</span><span class="n">trim</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="sc">' '</span><span class="o">))</span>
<span class="k">val</span> <span class="n">fpg</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">FPGrowth</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMinSupport</span><span class="o">(</span><span class="mf">0.2</span><span class="o">)</span>
<span class="o">.</span><span class="n">setNumPartitions</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">fpg</span><span class="o">.</span><span class="n">run</span><span class="o">(</span><span class="n">transactions</span><span class="o">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">freqItemsets</span><span class="o">.</span><span class="n">collect</span><span class="o">().</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">itemset</span> <span class="k">=></span>
<span class="n">println</span><span class="o">(</span><span class="n">itemset</span><span class="o">.</span><span class="n">items</span><span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">"["</span><span class="o">,</span> <span class="s">","</span><span class="o">,</span> <span class="s">"]"</span><span class="o">)</span> <span class="o">+</span> <span class="s">", "</span> <span class="o">+</span> <span class="n">itemset</span><span class="o">.</span><span class="n">freq</span><span class="o">)</span>
<span class="o">}</span>
<span class="k">val</span> <span class="n">minConfidence</span> <span class="k">=</span> <span class="mf">0.8</span>
<span class="n">model</span><span class="o">.</span><span class="n">generateAssociationRules</span><span class="o">(</span><span class="n">minConfidence</span><span class="o">).</span><span class="n">collect</span><span class="o">().</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">rule</span> <span class="k">=></span>
<span class="n">println</span><span class="o">(</span>
<span class="n">rule</span><span class="o">.</span><span class="n">antecedent</span><span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">"["</span><span class="o">,</span> <span class="s">","</span><span class="o">,</span> <span class="s">"]"</span><span class="o">)</span>
<span class="o">+</span> <span class="s">" => "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="n">consequent</span> <span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">"["</span><span class="o">,</span> <span class="s">","</span><span class="o">,</span> <span class="s">"]"</span><span class="o">)</span>
<span class="o">+</span> <span class="s">", "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="n">confidence</span><span class="o">)</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/SimpleFPGrowth.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/fpm/FPGrowth.html"><code>FPGrowth</code></a> implements the
FP-growth algorithm.
It take an <code>JavaRDD</code> of transactions, where each transaction is an <code>Iterable</code> of items of a generic type.
Calling <code>FPGrowth.run</code> with transactions returns an
<a href="api/java/org/apache/spark/mllib/fpm/FPGrowthModel.html"><code>FPGrowthModel</code></a>
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see <a href="mllib-frequent-pattern-mining.html#association-rules">Association
Rules</a> for
details) from <code>transactions</code>.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/fpm/FPGrowth.html"><code>FPGrowth</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.AssociationRules</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowth</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowthModel</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="s">"data/mllib/sample_fpgrowth.txt"</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">List</span><span class="o"><</span><span class="n">String</span><span class="o">>></span> <span class="n">transactions</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
<span class="k">new</span> <span class="n">Function</span><span class="o"><</span><span class="n">String</span><span class="o">,</span> <span class="n">List</span><span class="o"><</span><span class="n">String</span><span class="o">>>()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">List</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">line</span><span class="o">)</span> <span class="o">{</span>
<span class="n">String</span><span class="o">[]</span> <span class="n">parts</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">);</span>
<span class="k">return</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">parts</span><span class="o">);</span>
<span class="o">}</span>
<span class="o">}</span>
<span class="o">);</span>
<span class="n">FPGrowth</span> <span class="n">fpg</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">FPGrowth</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMinSupport</span><span class="o">(</span><span class="mf">0.2</span><span class="o">)</span>
<span class="o">.</span><span class="na">setNumPartitions</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span>
<span class="n">FPGrowthModel</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">model</span> <span class="o">=</span> <span class="n">fpg</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">transactions</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">FPGrowth</span><span class="o">.</span><span class="na">FreqItemset</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="nl">itemset:</span> <span class="n">model</span><span class="o">.</span><span class="na">freqItemsets</span><span class="o">().</span><span class="na">toJavaRDD</span><span class="o">().</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"["</span> <span class="o">+</span> <span class="n">itemset</span><span class="o">.</span><span class="na">javaItems</span><span class="o">()</span> <span class="o">+</span> <span class="s">"], "</span> <span class="o">+</span> <span class="n">itemset</span><span class="o">.</span><span class="na">freq</span><span class="o">());</span>
<span class="o">}</span>
<span class="kt">double</span> <span class="n">minConfidence</span> <span class="o">=</span> <span class="mf">0.8</span><span class="o">;</span>
<span class="k">for</span> <span class="o">(</span><span class="n">AssociationRules</span><span class="o">.</span><span class="na">Rule</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">rule</span>
<span class="o">:</span> <span class="n">model</span><span class="o">.</span><span class="na">generateAssociationRules</span><span class="o">(</span><span class="n">minConfidence</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">().</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span>
<span class="n">rule</span><span class="o">.</span><span class="na">javaAntecedent</span><span class="o">()</span> <span class="o">+</span> <span class="s">" => "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="na">javaConsequent</span><span class="o">()</span> <span class="o">+</span> <span class="s">", "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="na">confidence</span><span class="o">());</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaSimpleFPGrowth.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth"><code>FPGrowth</code></a> implements the
FP-growth algorithm.
It take an <code>RDD</code> of transactions, where each transaction is an <code>List</code> of items of a generic type.
Calling <code>FPGrowth.train</code> with transactions returns an
<a href="api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowthModel"><code>FPGrowthModel</code></a>
that stores the frequent itemsets with their frequencies.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth"><code>FPGrowth</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">pyspark.mllib.fpm</span> <span class="kn">import</span> <span class="n">FPGrowth</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/sample_fpgrowth.txt"</span><span class="p">)</span>
<span class="n">transactions</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">line</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">))</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">FPGrowth</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">transactions</span><span class="p">,</span> <span class="n">minSupport</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">freqItemsets</span><span class="p">()</span><span class="o">.</span><span class="n">collect</span><span class="p">()</span>
<span class="k">for</span> <span class="n">fi</span> <span class="ow">in</span> <span class="n">result</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">fi</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/mllib/fpgrowth_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="association-rules">Association Rules</h2>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.fpm.AssociationRules">AssociationRules</a>
implements a parallel rule generation algorithm for constructing rules
that have a single item as the consequent.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/fpm/AssociationRules.html"><code>AssociationRules</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.fpm.AssociationRules</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowth.FreqItemset</span>
<span class="k">val</span> <span class="n">freqItemsets</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="k">new</span> <span class="nc">FreqItemset</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="s">"a"</span><span class="o">),</span> <span class="mi">15L</span><span class="o">),</span>
<span class="k">new</span> <span class="nc">FreqItemset</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="s">"b"</span><span class="o">),</span> <span class="mi">35L</span><span class="o">),</span>
<span class="k">new</span> <span class="nc">FreqItemset</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">),</span> <span class="mi">12L</span><span class="o">)</span>
<span class="o">))</span>
<span class="k">val</span> <span class="n">ar</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">AssociationRules</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMinConfidence</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="k">val</span> <span class="n">results</span> <span class="k">=</span> <span class="n">ar</span><span class="o">.</span><span class="n">run</span><span class="o">(</span><span class="n">freqItemsets</span><span class="o">)</span>
<span class="n">results</span><span class="o">.</span><span class="n">collect</span><span class="o">().</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">rule</span> <span class="k">=></span>
<span class="n">println</span><span class="o">(</span><span class="s">"["</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="n">antecedent</span><span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">","</span><span class="o">)</span>
<span class="o">+</span> <span class="s">"=>"</span>
<span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="n">consequent</span><span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">","</span><span class="o">)</span> <span class="o">+</span> <span class="s">"],"</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="n">confidence</span><span class="o">)</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/AssociationRulesExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/fpm/AssociationRules.html">AssociationRules</a>
implements a parallel rule generation algorithm for constructing rules
that have a single item as the consequent.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/fpm/AssociationRules.html"><code>AssociationRules</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.AssociationRules</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowth</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.FPGrowth.FreqItemset</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">FPGrowth</span><span class="o">.</span><span class="na">FreqItemset</span><span class="o"><</span><span class="n">String</span><span class="o">>></span> <span class="n">freqItemsets</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="k">new</span> <span class="n">FreqItemset</span><span class="o"><</span><span class="n">String</span><span class="o">>(</span><span class="k">new</span> <span class="n">String</span><span class="o">[]</span> <span class="o">{</span><span class="s">"a"</span><span class="o">},</span> <span class="mi">15L</span><span class="o">),</span>
<span class="k">new</span> <span class="n">FreqItemset</span><span class="o"><</span><span class="n">String</span><span class="o">>(</span><span class="k">new</span> <span class="n">String</span><span class="o">[]</span> <span class="o">{</span><span class="s">"b"</span><span class="o">},</span> <span class="mi">35L</span><span class="o">),</span>
<span class="k">new</span> <span class="n">FreqItemset</span><span class="o"><</span><span class="n">String</span><span class="o">>(</span><span class="k">new</span> <span class="n">String</span><span class="o">[]</span> <span class="o">{</span><span class="s">"a"</span><span class="o">,</span> <span class="s">"b"</span><span class="o">},</span> <span class="mi">12L</span><span class="o">)</span>
<span class="o">));</span>
<span class="n">AssociationRules</span> <span class="n">arules</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">AssociationRules</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMinConfidence</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">AssociationRules</span><span class="o">.</span><span class="na">Rule</span><span class="o"><</span><span class="n">String</span><span class="o">>></span> <span class="n">results</span> <span class="o">=</span> <span class="n">arules</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">freqItemsets</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">AssociationRules</span><span class="o">.</span><span class="na">Rule</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">rule</span> <span class="o">:</span> <span class="n">results</span><span class="o">.</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span>
<span class="n">rule</span><span class="o">.</span><span class="na">javaAntecedent</span><span class="o">()</span> <span class="o">+</span> <span class="s">" => "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="na">javaConsequent</span><span class="o">()</span> <span class="o">+</span> <span class="s">", "</span> <span class="o">+</span> <span class="n">rule</span><span class="o">.</span><span class="na">confidence</span><span class="o">());</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaAssociationRulesExample.java" in the Spark repo.</small></div>
</div>
</div>
<h2 id="prefixspan">PrefixSpan</h2>
<p>PrefixSpan is a sequential pattern mining algorithm described in
<a href="http://dx.doi.org/10.1109%2FTKDE.2004.77">Pei et al., Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach</a>. We refer
the reader to the referenced paper for formalizing the sequential
pattern mining problem.</p>
<p><code>spark.mllib</code>’s PrefixSpan implementation takes the following parameters:</p>
<ul>
<li><code>minSupport</code>: the minimum support required to be considered a frequent
sequential pattern.</li>
<li><code>maxPatternLength</code>: the maximum length of a frequent sequential
pattern. Any frequent pattern exceeding this length will not be
included in the results.</li>
<li><code>maxLocalProjDBSize</code>: the maximum number of items allowed in a
prefix-projected database before local iterative processing of the
projected database begins. This parameter should be tuned with respect
to the size of your executors.</li>
</ul>
<p><strong>Examples</strong></p>
<p>The following example illustrates PrefixSpan running on the sequences
(using same notation as Pei et al):</p>
<pre><code> <(12)3>
<1(32)(12)>
<(12)5>
<6>
</code></pre>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan"><code>PrefixSpan</code></a> implements the
PrefixSpan algorithm.
Calling <code>PrefixSpan.run</code> returns a
<a href="api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel"><code>PrefixSpanModel</code></a>
that stores the frequent sequences with their frequencies.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan"><code>PrefixSpan</code> Scala docs</a> and <a href="api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel"><code>PrefixSpanModel</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="k">import</span> <span class="nn">org.apache.spark.mllib.fpm.PrefixSpan</span>
<span class="k">val</span> <span class="n">sequences</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="nc">Array</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">3</span><span class="o">)),</span>
<span class="nc">Array</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mi">1</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">)),</span>
<span class="nc">Array</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">5</span><span class="o">)),</span>
<span class="nc">Array</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mi">6</span><span class="o">))</span>
<span class="o">),</span> <span class="mi">2</span><span class="o">).</span><span class="n">cache</span><span class="o">()</span>
<span class="k">val</span> <span class="n">prefixSpan</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PrefixSpan</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">)</span>
<span class="o">.</span><span class="n">setMaxPatternLength</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">prefixSpan</span><span class="o">.</span><span class="n">run</span><span class="o">(</span><span class="n">sequences</span><span class="o">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">freqSequences</span><span class="o">.</span><span class="n">collect</span><span class="o">().</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">freqSequence</span> <span class="k">=></span>
<span class="n">println</span><span class="o">(</span>
<span class="n">freqSequence</span><span class="o">.</span><span class="n">sequence</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="k">_</span><span class="o">.</span><span class="n">mkString</span><span class="o">(</span><span class="s">"["</span><span class="o">,</span> <span class="s">", "</span><span class="o">,</span> <span class="s">"]"</span><span class="o">)).</span><span class="n">mkString</span><span class="o">(</span><span class="s">"["</span><span class="o">,</span> <span class="s">", "</span><span class="o">,</span> <span class="s">"]"</span><span class="o">)</span> <span class="o">+</span>
<span class="s">", "</span> <span class="o">+</span> <span class="n">freqSequence</span><span class="o">.</span><span class="n">freq</span><span class="o">)</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PrefixSpanExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/fpm/PrefixSpan.html"><code>PrefixSpan</code></a> implements the
PrefixSpan algorithm.
Calling <code>PrefixSpan.run</code> returns a
<a href="api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html"><code>PrefixSpanModel</code></a>
that stores the frequent sequences with their frequencies.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/fpm/PrefixSpan.html"><code>PrefixSpan</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html"><code>PrefixSpanModel</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.PrefixSpan</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.fpm.PrefixSpanModel</span><span class="o">;</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">List</span><span class="o"><</span><span class="n">List</span><span class="o"><</span><span class="n">Integer</span><span class="o">>>></span> <span class="n">sequences</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">3</span><span class="o">)),</span>
<span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">)),</span>
<span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">5</span><span class="o">)),</span>
<span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">6</span><span class="o">))</span>
<span class="o">),</span> <span class="mi">2</span><span class="o">);</span>
<span class="n">PrefixSpan</span> <span class="n">prefixSpan</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">PrefixSpan</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxPatternLength</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="n">PrefixSpanModel</span><span class="o"><</span><span class="n">Integer</span><span class="o">></span> <span class="n">model</span> <span class="o">=</span> <span class="n">prefixSpan</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">sequences</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">PrefixSpan</span><span class="o">.</span><span class="na">FreqSequence</span><span class="o"><</span><span class="n">Integer</span><span class="o">></span> <span class="nl">freqSeq:</span> <span class="n">model</span><span class="o">.</span><span class="na">freqSequences</span><span class="o">().</span><span class="na">toJavaRDD</span><span class="o">().</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">freqSeq</span><span class="o">.</span><span class="na">javaSequence</span><span class="o">()</span> <span class="o">+</span> <span class="s">", "</span> <span class="o">+</span> <span class="n">freqSeq</span><span class="o">.</span><span class="na">freq</span><span class="o">());</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaPrefixSpanExample.java" in the Spark repo.</small></div>
</div>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>