-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmllib-guide.html
executable file
·494 lines (368 loc) · 19.9 KB
/
mllib-guide.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>MLlib - Spark 2.0.0 Documentation</title>
<meta name="description" content="MLlib machine learning library overview for Spark 2.0.0">
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Machine Learning Library (MLlib) Guide</h1>
<p>MLlib is Spark’s machine learning (ML) library.
Its goal is to make practical machine learning scalable and easy.
It consists of common learning algorithms and utilities, including classification, regression,
clustering, collaborative filtering, dimensionality reduction, as well as lower-level optimization
primitives and higher-level pipeline APIs.</p>
<p>It divides into two packages:</p>
<ul>
<li><a href="mllib-guide.html#data-types-algorithms-and-utilities"><code>spark.mllib</code></a> contains the original API
built on top of <a href="programming-guide.html#resilient-distributed-datasets-rdds">RDDs</a>.</li>
<li><a href="ml-guide.html"><code>spark.ml</code></a> provides higher-level API
built on top of <a href="sql-programming-guide.html#dataframes">DataFrames</a> for constructing ML pipelines.</li>
</ul>
<p>Using <code>spark.ml</code> is recommended because with DataFrames the API is more versatile and flexible.
But we will keep supporting <code>spark.mllib</code> along with the development of <code>spark.ml</code>.
Users should be comfortable using <code>spark.mllib</code> features and expect more features coming.
Developers should contribute new algorithms to <code>spark.ml</code> if they fit the ML pipeline concept well,
e.g., feature extractors and transformers.</p>
<p>We list major functionality from both below, with links to detailed guides.</p>
<h1 id="sparkmllib-data-types-algorithms-and-utilities">spark.mllib: data types, algorithms, and utilities</h1>
<ul>
<li><a href="mllib-data-types.html">Data types</a></li>
<li><a href="mllib-statistics.html">Basic statistics</a>
<ul>
<li><a href="mllib-statistics.html#summary-statistics">summary statistics</a></li>
<li><a href="mllib-statistics.html#correlations">correlations</a></li>
<li><a href="mllib-statistics.html#stratified-sampling">stratified sampling</a></li>
<li><a href="mllib-statistics.html#hypothesis-testing">hypothesis testing</a></li>
<li><a href="mllib-statistics.html#streaming-significance-testing">streaming significance testing</a></li>
<li><a href="mllib-statistics.html#random-data-generation">random data generation</a></li>
</ul>
</li>
<li><a href="mllib-classification-regression.html">Classification and regression</a>
<ul>
<li><a href="mllib-linear-methods.html">linear models (SVMs, logistic regression, linear regression)</a></li>
<li><a href="mllib-naive-bayes.html">naive Bayes</a></li>
<li><a href="mllib-decision-tree.html">decision trees</a></li>
<li><a href="mllib-ensembles.html">ensembles of trees (Random Forests and Gradient-Boosted Trees)</a></li>
<li><a href="mllib-isotonic-regression.html">isotonic regression</a></li>
</ul>
</li>
<li><a href="mllib-collaborative-filtering.html">Collaborative filtering</a>
<ul>
<li><a href="mllib-collaborative-filtering.html#collaborative-filtering">alternating least squares (ALS)</a></li>
</ul>
</li>
<li><a href="mllib-clustering.html">Clustering</a>
<ul>
<li><a href="mllib-clustering.html#k-means">k-means</a></li>
<li><a href="mllib-clustering.html#gaussian-mixture">Gaussian mixture</a></li>
<li><a href="mllib-clustering.html#power-iteration-clustering-pic">power iteration clustering (PIC)</a></li>
<li><a href="mllib-clustering.html#latent-dirichlet-allocation-lda">latent Dirichlet allocation (LDA)</a></li>
<li><a href="mllib-clustering.html#bisecting-kmeans">bisecting k-means</a></li>
<li><a href="mllib-clustering.html#streaming-k-means">streaming k-means</a></li>
</ul>
</li>
<li><a href="mllib-dimensionality-reduction.html">Dimensionality reduction</a>
<ul>
<li><a href="mllib-dimensionality-reduction.html#singular-value-decomposition-svd">singular value decomposition (SVD)</a></li>
<li><a href="mllib-dimensionality-reduction.html#principal-component-analysis-pca">principal component analysis (PCA)</a></li>
</ul>
</li>
<li><a href="mllib-feature-extraction.html">Feature extraction and transformation</a></li>
<li><a href="mllib-frequent-pattern-mining.html">Frequent pattern mining</a>
<ul>
<li><a href="mllib-frequent-pattern-mining.html#fp-growth">FP-growth</a></li>
<li><a href="mllib-frequent-pattern-mining.html#association-rules">association rules</a></li>
<li><a href="mllib-frequent-pattern-mining.html#prefix-span">PrefixSpan</a></li>
</ul>
</li>
<li><a href="mllib-evaluation-metrics.html">Evaluation metrics</a></li>
<li><a href="mllib-pmml-model-export.html">PMML model export</a></li>
<li><a href="mllib-optimization.html">Optimization (developer)</a>
<ul>
<li><a href="mllib-optimization.html#stochastic-gradient-descent-sgd">stochastic gradient descent</a></li>
<li><a href="mllib-optimization.html#limited-memory-bfgs-l-bfgs">limited-memory BFGS (L-BFGS)</a></li>
</ul>
</li>
</ul>
<h1 id="sparkml-high-level-apis-for-ml-pipelines">spark.ml: high-level APIs for ML pipelines</h1>
<ul>
<li><a href="ml-guide.html">Overview: estimators, transformers and pipelines</a></li>
<li><a href="ml-features.html">Extracting, transforming and selecting features</a></li>
<li><a href="ml-classification-regression.html">Classification and regression</a></li>
<li><a href="ml-clustering.html">Clustering</a></li>
<li><a href="ml-collaborative-filtering.html">Collaborative filtering</a></li>
<li><a href="ml-advanced.html">Advanced topics</a></li>
</ul>
<p>Some techniques are not available yet in spark.ml, most notably dimensionality reduction
Users can seamlessly combine the implementation of these techniques found in <code>spark.mllib</code> with the rest of the algorithms found in <code>spark.ml</code>.</p>
<h1 id="dependencies">Dependencies</h1>
<p>MLlib uses the linear algebra package <a href="http://www.scalanlp.org/">Breeze</a>, which depends on
<a href="https://github.com/fommil/netlib-java">netlib-java</a> for optimised numerical processing.
If natives libraries<sup id="fnref:1"><a href="#fn:1" class="footnote">1</a></sup> are not available at runtime, you will see a warning message and a pure JVM
implementation will be used instead.</p>
<p>Due to licensing issues with runtime proprietary binaries, we do not include <code>netlib-java</code>’s native
proxies by default.
To configure <code>netlib-java</code> / Breeze to use system optimised binaries, include
<code>com.github.fommil.netlib:all:1.1.2</code> (or build Spark with <code>-Pnetlib-lgpl</code>) as a dependency of your
project and read the <a href="https://github.com/fommil/netlib-java">netlib-java</a> documentation for your
platform’s additional installation instructions.</p>
<p>To use MLlib in Python, you will need <a href="http://www.numpy.org">NumPy</a> version 1.4 or newer.</p>
<h1 id="migration-guide">Migration guide</h1>
<p>MLlib is under active development.
The APIs marked <code>Experimental</code>/<code>DeveloperApi</code> may change in future releases,
and the migration guide below will explain all changes between releases.</p>
<h2 id="from-15-to-16">From 1.5 to 1.6</h2>
<p>There are no breaking API changes in the <code>spark.mllib</code> or <code>spark.ml</code> packages, but there are
deprecations and changes of behavior.</p>
<p>Deprecations:</p>
<ul>
<li><a href="https://issues.apache.org/jira/browse/SPARK-11358">SPARK-11358</a>:
In <code>spark.mllib.clustering.KMeans</code>, the <code>runs</code> parameter has been deprecated.</li>
<li><a href="https://issues.apache.org/jira/browse/SPARK-10592">SPARK-10592</a>:
In <code>spark.ml.classification.LogisticRegressionModel</code> and
<code>spark.ml.regression.LinearRegressionModel</code>, the <code>weights</code> field has been deprecated in favor of
the new name <code>coefficients</code>. This helps disambiguate from instance (row) “weights” given to
algorithms.</li>
</ul>
<p>Changes of behavior:</p>
<ul>
<li><a href="https://issues.apache.org/jira/browse/SPARK-7770">SPARK-7770</a>:
<code>spark.mllib.tree.GradientBoostedTrees</code>: <code>validationTol</code> has changed semantics in 1.6.
Previously, it was a threshold for absolute change in error. Now, it resembles the behavior of
<code>GradientDescent</code>’s <code>convergenceTol</code>: For large errors, it uses relative error (relative to the
previous error); for small errors (<code>< 0.01</code>), it uses absolute error.</li>
<li><a href="https://issues.apache.org/jira/browse/SPARK-11069">SPARK-11069</a>:
<code>spark.ml.feature.RegexTokenizer</code>: Previously, it did not convert strings to lowercase before
tokenizing. Now, it converts to lowercase by default, with an option not to. This matches the
behavior of the simpler <code>Tokenizer</code> transformer.</li>
</ul>
<h2 id="previous-spark-versions">Previous Spark versions</h2>
<p>Earlier migration guides are archived <a href="mllib-migration-guides.html">on this page</a>.</p>
<hr />
<div class="footnotes">
<ol>
<li id="fn:1">
<p>To learn more about the benefits and background of system optimised natives, you may wish to
watch Sam Halliday’s ScalaX talk on <a href="http://fommil.github.io/scalax14/#/">High Performance Linear Algebra in Scala</a>. <a href="#fnref:1" class="reversefootnote">↩</a></p>
</li>
</ol>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>