-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmllib-statistics.html
executable file
·1070 lines (759 loc) · 75.2 KB
/
mllib-statistics.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Basic Statistics - spark.mllib - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">spark.ml package</a></h3>
<ul>
<li>
<a href="ml-guide.html">
Overview: estimators, transformers and pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">spark.mllib package</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
<b>Basic statistics</b>
</a>
</li>
<ul>
<li>
<a href="mllib-statistics.html#summary-statistics">
Summary statistics
</a>
</li>
<li>
<a href="mllib-statistics.html#correlations">
Correlations
</a>
</li>
<li>
<a href="mllib-statistics.html#stratified-sampling">
Stratified sampling
</a>
</li>
<li>
<a href="mllib-statistics.html#hypothesis-testing">
Hypothesis testing
</a>
</li>
<li>
<a href="mllib-statistics.html#random-data-generation">
Random data generation
</a>
</li>
</ul>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Basic Statistics - spark.mllib</h1>
<ul id="markdown-toc">
<li><a href="#summary-statistics">Summary statistics</a></li>
<li><a href="#correlations">Correlations</a></li>
<li><a href="#stratified-sampling">Stratified sampling</a></li>
<li><a href="#hypothesis-testing">Hypothesis testing</a> <ul>
<li><a href="#streaming-significance-testing">Streaming Significance Testing</a></li>
</ul>
</li>
<li><a href="#random-data-generation">Random data generation</a></li>
<li><a href="#kernel-density-estimation">Kernel density estimation</a></li>
</ul>
<p><code>\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]</code></p>
<h2 id="summary-statistics">Summary statistics</h2>
<p>We provide column summary statistics for <code>RDD[Vector]</code> through the function <code>colStats</code>
available in <code>Statistics</code>.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>colStats()</code></a> returns an instance of
<a href="api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.</span><span class="o">{</span><span class="nc">MultivariateStatisticalSummary</span><span class="o">,</span> <span class="nc">Statistics</span><span class="o">}</span>
<span class="k">val</span> <span class="n">observations</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Vector</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of Vectors</span>
<span class="c1">// Compute column summary statistics.</span>
<span class="k">val</span> <span class="n">summary</span><span class="k">:</span> <span class="kt">MultivariateStatisticalSummary</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">colStats</span><span class="o">(</span><span class="n">observations</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">mean</span><span class="o">)</span> <span class="c1">// a dense vector containing the mean value for each column</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">variance</span><span class="o">)</span> <span class="c1">// column-wise variance</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">numNonzeros</span><span class="o">)</span> <span class="c1">// number of nonzeros in each column</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>colStats()</code></a> returns an instance of
<a href="api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html"><code>MultivariateStatisticalSummary</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.MultivariateStatisticalSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of Vectors</span>
<span class="c1">// Compute column summary statistics.</span>
<span class="n">MultivariateStatisticalSummary</span> <span class="n">summary</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">colStats</span><span class="o">(</span><span class="n">mat</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">mean</span><span class="o">());</span> <span class="c1">// a dense vector containing the mean value for each column</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">variance</span><span class="o">());</span> <span class="c1">// column-wise variance</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">numNonzeros</span><span class="o">());</span> <span class="c1">// number of nonzeros in each column</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics.colStats"><code>colStats()</code></a> returns an instance of
<a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of Vectors</span>
<span class="c"># Compute column summary statistics.</span>
<span class="n">summary</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">colStats</span><span class="p">(</span><span class="n">mat</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">summary</span><span class="o">.</span><span class="n">mean</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="n">summary</span><span class="o">.</span><span class="n">variance</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="n">summary</span><span class="o">.</span><span class="n">numNonzeros</span><span class="p">())</span></code></pre></div>
</div>
</div>
<h2 id="correlations">Correlations</h2>
<p>Calculating the correlation between two series of data is a common operation in Statistics. In <code>spark.mllib</code>
we provide the flexibility to calculate pairwise correlations among many series. The supported
correlation methods are currently Pearson’s and Spearman’s correlation.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>RDD[Double]</code>s or
an <code>RDD[Vector]</code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics"><code>Statistics</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">seriesX</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// a series</span>
<span class="k">val</span> <span class="n">seriesY</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// must have the same number of partitions and cardinality as seriesX</span>
<span class="c1">// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a </span>
<span class="c1">// method is not specified, Pearson's method will be used by default. </span>
<span class="k">val</span> <span class="n">correlation</span><span class="k">:</span> <span class="kt">Double</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="o">(</span><span class="n">seriesX</span><span class="o">,</span> <span class="n">seriesY</span><span class="o">,</span> <span class="s">"pearson"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Vector</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// note that each Vector is a row and not a column</span>
<span class="c1">// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.</span>
<span class="c1">// If a method is not specified, Pearson's method will be used by default. </span>
<span class="k">val</span> <span class="n">correlMatrix</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="s">"pearson"</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>JavaDoubleRDD</code>s or
a <code>JavaRDD<Vector></code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaDoubleRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaDoubleRDD</span> <span class="n">seriesX</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a series</span>
<span class="n">JavaDoubleRDD</span> <span class="n">seriesY</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// must have the same number of partitions and cardinality as seriesX</span>
<span class="c1">// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a </span>
<span class="c1">// method is not specified, Pearson's method will be used by default. </span>
<span class="n">Double</span> <span class="n">correlation</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">seriesX</span><span class="o">.</span><span class="na">srdd</span><span class="o">(),</span> <span class="n">seriesY</span><span class="o">.</span><span class="na">srdd</span><span class="o">(),</span> <span class="s">"pearson"</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">Vector</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// note that each Vector is a row and not a column</span>
<span class="c1">// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.</span>
<span class="c1">// If a method is not specified, Pearson's method will be used by default. </span>
<span class="n">Matrix</span> <span class="n">correlMatrix</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">data</span><span class="o">.</span><span class="na">rdd</span><span class="o">(),</span> <span class="s">"pearson"</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>RDD[Double]</code>s or
an <code>RDD[Vector]</code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics"><code>Statistics</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">seriesX</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># a series</span>
<span class="n">seriesY</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># must have the same number of partitions and cardinality as seriesX</span>
<span class="c"># Compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a </span>
<span class="c"># method is not specified, Pearson's method will be used by default. </span>
<span class="k">print</span><span class="p">(</span><span class="n">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="p">(</span><span class="n">seriesX</span><span class="p">,</span> <span class="n">seriesY</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s">"pearson"</span><span class="p">))</span>
<span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of Vectors</span>
<span class="c"># calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.</span>
<span class="c"># If a method is not specified, Pearson's method will be used by default. </span>
<span class="k">print</span><span class="p">(</span><span class="n">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s">"pearson"</span><span class="p">))</span></code></pre></div>
</div>
</div>
<h2 id="stratified-sampling">Stratified sampling</h2>
<p>Unlike the other statistics functions, which reside in <code>spark.mllib</code>, stratified sampling methods,
<code>sampleByKey</code> and <code>sampleByKeyExact</code>, can be performed on RDD’s of key-value pairs. For stratified
sampling, the keys can be thought of as a label and the value as a specific attribute. For example
the key can be man or woman, or document ids, and the respective values can be the list of ages
of the people in the population or the list of words in the documents. The <code>sampleByKey</code> method
will flip a coin to decide whether an observation will be sampled or not, therefore requires one
pass over the data, and provides an <em>expected</em> sample size. <code>sampleByKeyExact</code> requires significant
more resources than the per-stratum simple random sampling used in <code>sampleByKey</code>, but will provide
the exact sampling size with 99.99% confidence. <code>sampleByKeyExact</code> is currently not supported in
python.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions"><code>sampleByKeyExact()</code></a> allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.SparkContext._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.PairRDDFunctions</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD[(K, V)] of any key value pairs</span>
<span class="k">val</span> <span class="n">fractions</span><span class="k">:</span> <span class="kt">Map</span><span class="o">[</span><span class="kt">K</span>, <span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// specify the exact fraction desired from each key</span>
<span class="c1">// Get an exact sample from each stratum</span>
<span class="k">val</span> <span class="n">approxSample</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKey</span><span class="o">(</span><span class="n">withReplacement</span> <span class="k">=</span> <span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">)</span>
<span class="k">val</span> <span class="n">exactSample</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKeyExact</span><span class="o">(</span><span class="n">withReplacement</span> <span class="k">=</span> <span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/api/java/JavaPairRDD.html"><code>sampleByKeyExact()</code></a> allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">java.util.Map</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaPairRDD</span><span class="o"><</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of any key value pairs</span>
<span class="n">Map</span><span class="o"><</span><span class="n">K</span><span class="o">,</span> <span class="n">Object</span><span class="o">></span> <span class="n">fractions</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// specify the exact fraction desired from each key</span>
<span class="c1">// Get an exact sample from each stratum</span>
<span class="n">JavaPairRDD</span><span class="o"><</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">></span> <span class="n">approxSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">sampleByKey</span><span class="o">(</span><span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">);</span>
<span class="n">JavaPairRDD</span><span class="o"><</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">></span> <span class="n">exactSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">sampleByKeyExact</span><span class="o">(</span><span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.html#pyspark.RDD.sampleByKey"><code>sampleByKey()</code></a> allows users to
sample approximately $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the
desired fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the
set of keys.</p>
<p><em>Note:</em> <code>sampleByKeyExact()</code> is currently not supported in Python.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of any key value pairs</span>
<span class="n">fractions</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># specify the exact fraction desired from each key as a dictionary</span>
<span class="n">approxSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKey</span><span class="p">(</span><span class="bp">False</span><span class="p">,</span> <span class="n">fractions</span><span class="p">);</span></code></pre></div>
</div>
</div>
<h2 id="hypothesis-testing">Hypothesis testing</h2>
<p>Hypothesis testing is a powerful tool in statistics to determine whether a result is statistically
significant, whether this result occurred by chance or not. <code>spark.mllib</code> currently supports Pearson’s
chi-squared ( $\chi^2$) tests for goodness of fit and independence. The input data types determine
whether the goodness of fit or the independence test is conducted. The goodness of fit test requires
an input type of <code>Vector</code>, whereas the independence test requires a <code>Matrix</code> as input.</p>
<p><code>spark.mllib</code> also supports the input type <code>RDD[LabeledPoint]</code> to enable feature selection via chi-squared
independence tests.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics._</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">vec</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a vector composed of the frequencies of events</span>
<span class="c1">// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, </span>
<span class="c1">// the test runs against a uniform distribution. </span>
<span class="k">val</span> <span class="n">goodnessOfFitTestResult</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">vec</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">goodnessOfFitTestResult</span><span class="o">)</span> <span class="c1">// summary of the test including the p-value, degrees of freedom, </span>
<span class="c1">// test statistic, the method used, and the null hypothesis.</span>
<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a contingency matrix</span>
<span class="c1">// conduct Pearson's independence test on the input contingency matrix</span>
<span class="k">val</span> <span class="n">independenceTestResult</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">mat</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">independenceTestResult</span><span class="o">)</span> <span class="c1">// summary of the test including the p-value, degrees of freedom...</span>
<span class="k">val</span> <span class="n">obs</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// (feature, label) pairs.</span>
<span class="c1">// The contingency table is constructed from the raw (feature, label) pairs and used to conduct</span>
<span class="c1">// the independence test. Returns an array containing the ChiSquaredTestResult for every feature </span>
<span class="c1">// against the label.</span>
<span class="k">val</span> <span class="n">featureTestResults</span><span class="k">:</span> <span class="kt">Array</span><span class="o">[</span><span class="kt">ChiSqTestResult</span><span class="o">]</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">obs</span><span class="o">)</span>
<span class="k">var</span> <span class="n">i</span> <span class="k">=</span> <span class="mi">1</span>
<span class="n">featureTestResults</span><span class="o">.</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">result</span> <span class="k">=></span>
<span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Column $i:\n$result"</span><span class="o">)</span>
<span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="o">}</span> <span class="c1">// summary of the test</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code></a> provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/stat/test/ChiSqTestResult.html"><code>ChiSqTestResult</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.test.ChiSqTestResult</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">Vector</span> <span class="n">vec</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a vector composed of the frequencies of events</span>
<span class="c1">// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, </span>
<span class="c1">// the test runs against a uniform distribution. </span>
<span class="n">ChiSqTestResult</span> <span class="n">goodnessOfFitTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">vec</span><span class="o">);</span>
<span class="c1">// summary of the test including the p-value, degrees of freedom, test statistic, the method used, </span>
<span class="c1">// and the null hypothesis.</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">goodnessOfFitTestResult</span><span class="o">);</span>
<span class="n">Matrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a contingency matrix</span>
<span class="c1">// conduct Pearson's independence test on the input contingency matrix</span>
<span class="n">ChiSqTestResult</span> <span class="n">independenceTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">mat</span><span class="o">);</span>
<span class="c1">// summary of the test including the p-value, degrees of freedom...</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">independenceTestResult</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">LabeledPoint</span><span class="o">></span> <span class="n">obs</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of labeled points</span>
<span class="c1">// The contingency table is constructed from the raw (feature, label) pairs and used to conduct</span>
<span class="c1">// the independence test. Returns an array containing the ChiSquaredTestResult for every feature </span>
<span class="c1">// against the label.</span>
<span class="n">ChiSqTestResult</span><span class="o">[]</span> <span class="n">featureTestResults</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">obs</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">1</span><span class="o">;</span>
<span class="k">for</span> <span class="o">(</span><span class="n">ChiSqTestResult</span> <span class="n">result</span> <span class="o">:</span> <span class="n">featureTestResults</span><span class="o">)</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Column "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">":"</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">result</span><span class="o">);</span> <span class="c1">// summary of the test</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/index.html#pyspark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics"><code>Statistics</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span><span class="p">,</span> <span class="n">Matrices</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.regresssion</span> <span class="kn">import</span> <span class="n">LabeledPoint</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">()</span>
<span class="n">vec</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># a vector composed of the frequencies of events</span>
<span class="c"># compute the goodness of fit. If a second vector to test against is not supplied as a parameter,</span>
<span class="c"># the test runs against a uniform distribution.</span>
<span class="n">goodnessOfFitTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">vec</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">goodnessOfFitTestResult</span><span class="p">)</span> <span class="c"># summary of the test including the p-value, degrees of freedom,</span>
<span class="c"># test statistic, the method used, and the null hypothesis.</span>
<span class="n">mat</span> <span class="o">=</span> <span class="n">Matrices</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># a contingency matrix</span>
<span class="c"># conduct Pearson's independence test on the input contingency matrix</span>
<span class="n">independenceTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">mat</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">independenceTestResult</span><span class="p">)</span> <span class="c"># summary of the test including the p-value, degrees of freedom...</span>
<span class="n">obs</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># LabeledPoint(feature, label) .</span>
<span class="c"># The contingency table is constructed from an RDD of LabeledPoint and used to conduct</span>
<span class="c"># the independence test. Returns an array containing the ChiSquaredTestResult for every feature</span>
<span class="c"># against the label.</span>
<span class="n">featureTestResults</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">obs</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">result</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">featureTestResults</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Column $d:"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">result</span><span class="p">)</span></code></pre></div>
</div>
</div>
<p>Additionally, <code>spark.mllib</code> provides a 1-sample, 2-sided implementation of the Kolmogorov-Smirnov (KS) test
for equality of probability distributions. By providing the name of a theoretical distribution
(currently solely supported for the normal distribution) and its parameters, or a function to
calculate the cumulative distribution according to a given theoretical distribution, the user can
test the null hypothesis that their sample is drawn from that distribution. In the case that the
user tests against the normal distribution (<code>distName="norm"</code>), but does not provide distribution
parameters, the test initializes to the standard normal distribution and logs an appropriate
message.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics"><code>Statistics</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span>
<span class="k">val</span> <span class="n">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of sample data</span>
<span class="c1">// run a KS test for the sample versus a standard normal distribution</span>
<span class="k">val</span> <span class="n">testResult</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">kolmogorovSmirnovTest</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="s">"norm"</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">testResult</span><span class="o">)</span> <span class="c1">// summary of the test including the p-value, test statistic,</span>
<span class="c1">// and null hypothesis</span>
<span class="c1">// if our p-value indicates significance, we can reject the null hypothesis</span>
<span class="c1">// perform a KS test using a cumulative distribution function of our making</span>
<span class="k">val</span> <span class="n">myCDF</span><span class="k">:</span> <span class="kt">Double</span> <span class="o">=></span> <span class="nc">Double</span> <span class="k">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">testResult2</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">kolmogorovSmirnovTest</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">myCDF</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code></a> provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaDoubleRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaDoubleRDD</span> <span class="n">data</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelizeDoubles</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mf">0.2</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">,</span> <span class="o">...));</span>
<span class="n">KolmogorovSmirnovTestResult</span> <span class="n">testResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">kolmogorovSmirnovTest</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="s">"norm"</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">);</span>
<span class="c1">// summary of the test including the p-value, test statistic,</span>
<span class="c1">// and null hypothesis</span>
<span class="c1">// if our p-value indicates significance, we can reject the null hypothesis</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">testResult</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics"><code>Statistics</code></a> provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics"><code>Statistics</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">parallelData</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="o">...</span> <span class="p">])</span>
<span class="c"># run a KS test for the sample versus a standard normal distribution</span>
<span class="n">testResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">kolmogorovSmirnovTest</span><span class="p">(</span><span class="n">parallelData</span><span class="p">,</span> <span class="s">"norm"</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">testResult</span><span class="p">)</span> <span class="c"># summary of the test including the p-value, test statistic,</span>
<span class="c"># and null hypothesis</span>
<span class="c"># if our p-value indicates significance, we can reject the null hypothesis</span>
<span class="c"># Note that the Scala functionality of calling Statistics.kolmogorovSmirnovTest with</span>
<span class="c"># a lambda to calculate the CDF is not made available in the Python API</span></code></pre></div>
</div>
</div>
<h3 id="streaming-significance-testing">Streaming Significance Testing</h3>
<p><code>spark.mllib</code> provides online implementations of some tests to support use cases
like A/B testing. These tests may be performed on a Spark Streaming
<code>DStream[(Boolean,Double)]</code> where the first element of each tuple
indicates control group (<code>false</code>) or treatment group (<code>true</code>) and the
second element is the value of an observation.</p>
<p>Streaming significance testing supports the following parameters:</p>
<ul>
<li><code>peacePeriod</code> - The number of initial data points from the stream to
ignore, used to mitigate novelty effects.</li>
<li><code>windowSize</code> - The number of past batches to perform hypothesis
testing over. Setting to <code>0</code> will perform cumulative processing using
all prior batches.</li>
</ul>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.test.StreamingTest"><code>StreamingTest</code></a>
provides streaming hypothesis testing.</p>
<div class="highlight"><pre><span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="n">ssc</span><span class="o">.</span><span class="n">textFileStream</span><span class="o">(</span><span class="n">dataDir</span><span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">","</span><span class="o">)</span> <span class="k">match</span> <span class="o">{</span>
<span class="k">case</span> <span class="nc">Array</span><span class="o">(</span><span class="n">label</span><span class="o">,</span> <span class="n">value</span><span class="o">)</span> <span class="k">=></span> <span class="nc">BinarySample</span><span class="o">(</span><span class="n">label</span><span class="o">.</span><span class="n">toBoolean</span><span class="o">,</span> <span class="n">value</span><span class="o">.</span><span class="n">toDouble</span><span class="o">)</span>
<span class="o">})</span>
<span class="k">val</span> <span class="n">streamingTest</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StreamingTest</span><span class="o">()</span>
<span class="o">.</span><span class="n">setPeacePeriod</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="o">.</span><span class="n">setWindowSize</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="o">.</span><span class="n">setTestMethod</span><span class="o">(</span><span class="s">"welch"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">out</span> <span class="k">=</span> <span class="n">streamingTest</span><span class="o">.</span><span class="n">registerStream</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="n">out</span><span class="o">.</span><span class="n">print</span><span class="o">()</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/StreamingTestExample.scala" in the Spark repo.</small></div>
</div>
</div>
<h2 id="random-data-generation">Random data generation</h2>
<p>Random data generation is useful for randomized algorithms, prototyping, and performance testing.
<code>spark.mllib</code> supports generating random RDDs with i.i.d. values drawn from a given distribution:
uniform, standard normal, or Poisson.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.random.RandomRDDs"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.random.RandomRDDs"><code>RandomRDDs</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.random.RandomRDDs._</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="c1">// Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c1">// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="k">val</span> <span class="n">u</span> <span class="k">=</span> <span class="n">normalRDD</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="mi">1000000L</span><span class="o">,</span> <span class="mi">10</span><span class="o">)</span>
<span class="c1">// Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="k">val</span> <span class="n">v</span> <span class="k">=</span> <span class="n">u</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">x</span> <span class="k">=></span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/index.html#org.apache.spark.mllib.random.RandomRDDs"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/random/RandomRDDs"><code>RandomRDDs</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.JavaDoubleRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">static</span> <span class="n">org</span><span class="o">.</span><span class="na">apache</span><span class="o">.</span><span class="na">spark</span><span class="o">.</span><span class="na">mllib</span><span class="o">.</span><span class="na">random</span><span class="o">.</span><span class="na">RandomRDDs</span><span class="o">.*;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="c1">// Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c1">// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="n">JavaDoubleRDD</span> <span class="n">u</span> <span class="o">=</span> <span class="n">normalJavaRDD</span><span class="o">(</span><span class="n">jsc</span><span class="o">,</span> <span class="mi">1000000L</span><span class="o">,</span> <span class="mi">10</span><span class="o">);</span>
<span class="c1">// Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="n">JavaDoubleRDD</span> <span class="n">v</span> <span class="o">=</span> <span class="n">u</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
<span class="k">new</span> <span class="n">Function</span><span class="o"><</span><span class="n">Double</span><span class="o">,</span> <span class="n">Double</span><span class="o">>()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">Double</span> <span class="nf">call</span><span class="o">(</span><span class="n">Double</span> <span class="n">x</span><span class="o">)</span> <span class="o">{</span>
<span class="k">return</span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="o">;</span>
<span class="o">}</span>
<span class="o">});</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<p>Refer to the <a href="api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs"><code>RandomRDDs</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.random</span> <span class="kn">import</span> <span class="n">RandomRDDs</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="c"># Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c"># standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="n">u</span> <span class="o">=</span> <span class="n">RandomRDDs</span><span class="o">.</span><span class="n">normalRDD</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="il">1000000L</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="c"># Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">u</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span></code></pre></div>
</div>
</div>
<h2 id="kernel-density-estimation">Kernel density estimation</h2>
<p><a href="https://en.wikipedia.org/wiki/Kernel_density_estimation">Kernel density estimation</a> is a technique
useful for visualizing empirical probability distributions without requiring assumptions about the
particular distribution that the observed samples are drawn from. It computes an estimate of the
probability density function of a random variables, evaluated at a given set of points. It achieves
this estimate by expressing the PDF of the empirical distribution at a particular point as the the
mean of PDFs of normal distributions centered around each of the samples.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.KernelDensity"><code>KernelDensity</code></a> provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.</p>
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.mllib.stat.KernelDensity"><code>KernelDensity</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.KernelDensity</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.RDD</span>
<span class="k">val</span> <span class="n">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of sample data</span>
<span class="c1">// Construct the density estimator with the sample data and a standard deviation for the Gaussian</span>
<span class="c1">// kernels</span>
<span class="k">val</span> <span class="n">kd</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">KernelDensity</span><span class="o">()</span>
<span class="o">.</span><span class="n">setSample</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="o">.</span><span class="n">setBandwidth</span><span class="o">(</span><span class="mf">3.0</span><span class="o">)</span>
<span class="c1">// Find density estimates for the given values</span>
<span class="k">val</span> <span class="n">densities</span> <span class="k">=</span> <span class="n">kd</span><span class="o">.</span><span class="n">estimate</span><span class="o">(</span><span class="nc">Array</span><span class="o">(-</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">2.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">))</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/index.html#org.apache.spark.mllib.stat.KernelDensity"><code>KernelDensity</code></a> provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/stat/KernelDensity.html"><code>KernelDensity</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.KernelDensity</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.rdd.RDD</span><span class="o">;</span>
<span class="n">RDD</span><span class="o"><</span><span class="n">Double</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of sample data</span>
<span class="c1">// Construct the density estimator with the sample data and a standard deviation for the Gaussian</span>
<span class="c1">// kernels</span>
<span class="n">KernelDensity</span> <span class="n">kd</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">KernelDensity</span><span class="o">()</span>
<span class="o">.</span><span class="na">setSample</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="o">.</span><span class="na">setBandwidth</span><span class="o">(</span><span class="mf">3.0</span><span class="o">);</span>