-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathquick-start.html
executable file
·568 lines (431 loc) · 50.9 KB
/
quick-start.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Quick Start - Spark 2.0.0 Documentation</title>
<meta name="description" content="Quick start tutorial for Spark 2.0.0">
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="content" id="content">
<h1 class="title">Quick Start</h1>
<ul id="markdown-toc">
<li><a href="#interactive-analysis-with-the-spark-shell">Interactive Analysis with the Spark Shell</a> <ul>
<li><a href="#basics">Basics</a></li>
<li><a href="#more-on-rdd-operations">More on RDD Operations</a></li>
<li><a href="#caching">Caching</a></li>
</ul>
</li>
<li><a href="#self-contained-applications">Self-Contained Applications</a></li>
<li><a href="#where-to-go-from-here">Where to Go from Here</a></li>
</ul>
<p>This tutorial provides a quick introduction to using Spark. We will first introduce the API through Spark’s
interactive shell (in Python or Scala),
then show how to write applications in Java, Scala, and Python.
See the <a href="programming-guide.html">programming guide</a> for a more complete reference.</p>
<p>To follow along with this guide, first download a packaged release of Spark from the
<a href="http://spark.apache.org/downloads.html">Spark website</a>. Since we won’t be using HDFS,
you can download a package for any version of Hadoop.</p>
<h1 id="interactive-analysis-with-the-spark-shell">Interactive Analysis with the Spark Shell</h1>
<h2 id="basics">Basics</h2>
<p>Spark’s shell provides a simple way to learn the API, as well as a powerful tool to analyze data interactively.
It is available in either Scala (which runs on the Java VM and is thus a good way to use existing Java libraries)
or Python. Start it by running the following in the Spark directory:</p>
<div class="codetabs">
<div data-lang="scala">
<pre><code>./bin/spark-shell
</code></pre>
<p>Spark’s primary abstraction is a distributed collection of items called a Resilient Distributed Dataset (RDD). RDDs can be created from Hadoop InputFormats (such as HDFS files) or by transforming other RDDs. Let’s make a new RDD from the text of the README file in the Spark source directory:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">val</span> <span class="n">textFile</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="s">"README.md"</span><span class="o">)</span>
<span class="n">textFile</span><span class="k">:</span> <span class="kt">spark.RDD</span><span class="o">[</span><span class="kt">String</span><span class="o">]</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="nc">MappedRDD</span><span class="k">@</span><span class="mi">2</span><span class="n">ee9b6e3</span></code></pre></div>
<p>RDDs have <em><a href="programming-guide.html#actions">actions</a></em>, which return values, and <em><a href="programming-guide.html#transformations">transformations</a></em>, which return pointers to new RDDs. Let’s start with a few actions:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="n">textFile</span><span class="o">.</span><span class="n">count</span><span class="o">()</span> <span class="c1">// Number of items in this RDD</span>
<span class="n">res0</span><span class="k">:</span> <span class="kt">Long</span> <span class="o">=</span> <span class="mi">126</span>
<span class="n">scala</span><span class="o">></span> <span class="n">textFile</span><span class="o">.</span><span class="n">first</span><span class="o">()</span> <span class="c1">// First item in this RDD</span>
<span class="n">res1</span><span class="k">:</span> <span class="kt">String</span> <span class="o">=</span> <span class="k">#</span> <span class="nc">Apache</span> <span class="nc">Spark</span></code></pre></div>
<p>Now let’s use a transformation. We will use the <a href="programming-guide.html#transformations"><code>filter</code></a> transformation to return a new RDD with a subset of the items in the file.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">val</span> <span class="n">linesWithSpark</span> <span class="k">=</span> <span class="n">textFile</span><span class="o">.</span><span class="n">filter</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">contains</span><span class="o">(</span><span class="s">"Spark"</span><span class="o">))</span>
<span class="n">linesWithSpark</span><span class="k">:</span> <span class="kt">spark.RDD</span><span class="o">[</span><span class="kt">String</span><span class="o">]</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="nc">FilteredRDD</span><span class="k">@</span><span class="mi">7</span><span class="n">dd4af09</span></code></pre></div>
<p>We can chain together transformations and actions:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="n">textFile</span><span class="o">.</span><span class="n">filter</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">contains</span><span class="o">(</span><span class="s">"Spark"</span><span class="o">)).</span><span class="n">count</span><span class="o">()</span> <span class="c1">// How many lines contain "Spark"?</span>
<span class="n">res3</span><span class="k">:</span> <span class="kt">Long</span> <span class="o">=</span> <span class="mi">15</span></code></pre></div>
</div>
<div data-lang="python">
<pre><code>./bin/pyspark
</code></pre>
<p>Spark’s primary abstraction is a distributed collection of items called a Resilient Distributed Dataset (RDD). RDDs can be created from Hadoop InputFormats (such as HDFS files) or by transforming other RDDs. Let’s make a new RDD from the text of the README file in the Spark source directory:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">textFile</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"README.md"</span><span class="p">)</span></code></pre></div>
<p>RDDs have <em><a href="programming-guide.html#actions">actions</a></em>, which return values, and <em><a href="programming-guide.html#transformations">transformations</a></em>, which return pointers to new RDDs. Let’s start with a few actions:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">textFile</span><span class="o">.</span><span class="n">count</span><span class="p">()</span> <span class="c"># Number of items in this RDD</span>
<span class="mi">126</span>
<span class="o">>>></span> <span class="n">textFile</span><span class="o">.</span><span class="n">first</span><span class="p">()</span> <span class="c"># First item in this RDD</span>
<span class="s">u'# Apache Spark'</span></code></pre></div>
<p>Now let’s use a transformation. We will use the <a href="programming-guide.html#transformations"><code>filter</code></a> transformation to return a new RDD with a subset of the items in the file.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">linesWithSpark</span> <span class="o">=</span> <span class="n">textFile</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="s">"Spark"</span> <span class="ow">in</span> <span class="n">line</span><span class="p">)</span></code></pre></div>
<p>We can chain together transformations and actions:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">textFile</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="s">"Spark"</span> <span class="ow">in</span> <span class="n">line</span><span class="p">)</span><span class="o">.</span><span class="n">count</span><span class="p">()</span> <span class="c"># How many lines contain "Spark"?</span>
<span class="mi">15</span></code></pre></div>
</div>
</div>
<h2 id="more-on-rdd-operations">More on RDD Operations</h2>
<p>RDD actions and transformations can be used for more complex computations. Let’s say we want to find the line with the most words:</p>
<div class="codetabs">
<div data-lang="scala">
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="n">textFile</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">).</span><span class="n">size</span><span class="o">).</span><span class="n">reduce</span><span class="o">((</span><span class="n">a</span><span class="o">,</span> <span class="n">b</span><span class="o">)</span> <span class="k">=></span> <span class="k">if</span> <span class="o">(</span><span class="n">a</span> <span class="o">></span> <span class="n">b</span><span class="o">)</span> <span class="n">a</span> <span class="k">else</span> <span class="n">b</span><span class="o">)</span>
<span class="n">res4</span><span class="k">:</span> <span class="kt">Long</span> <span class="o">=</span> <span class="mi">15</span></code></pre></div>
<p>This first maps a line to an integer value, creating a new RDD. <code>reduce</code> is called on that RDD to find the largest line count. The arguments to <code>map</code> and <code>reduce</code> are Scala function literals (closures), and can use any language feature or Scala/Java library. For example, we can easily call functions declared elsewhere. We’ll use <code>Math.max()</code> function to make this code easier to understand:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">import</span> <span class="nn">java.lang.Math</span>
<span class="k">import</span> <span class="nn">java.lang.Math</span>
<span class="n">scala</span><span class="o">></span> <span class="n">textFile</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">).</span><span class="n">size</span><span class="o">).</span><span class="n">reduce</span><span class="o">((</span><span class="n">a</span><span class="o">,</span> <span class="n">b</span><span class="o">)</span> <span class="k">=></span> <span class="nc">Math</span><span class="o">.</span><span class="n">max</span><span class="o">(</span><span class="n">a</span><span class="o">,</span> <span class="n">b</span><span class="o">))</span>
<span class="n">res5</span><span class="k">:</span> <span class="kt">Int</span> <span class="o">=</span> <span class="mi">15</span></code></pre></div>
<p>One common data flow pattern is MapReduce, as popularized by Hadoop. Spark can implement MapReduce flows easily:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">val</span> <span class="n">wordCounts</span> <span class="k">=</span> <span class="n">textFile</span><span class="o">.</span><span class="n">flatMap</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">)).</span><span class="n">map</span><span class="o">(</span><span class="n">word</span> <span class="k">=></span> <span class="o">(</span><span class="n">word</span><span class="o">,</span> <span class="mi">1</span><span class="o">)).</span><span class="n">reduceByKey</span><span class="o">((</span><span class="n">a</span><span class="o">,</span> <span class="n">b</span><span class="o">)</span> <span class="k">=></span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span><span class="o">)</span>
<span class="n">wordCounts</span><span class="k">:</span> <span class="kt">spark.RDD</span><span class="o">[(</span><span class="kt">String</span>, <span class="kt">Int</span><span class="o">)]</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="nc">ShuffledAggregatedRDD</span><span class="k">@</span><span class="mi">71</span><span class="n">f027b8</span></code></pre></div>
<p>Here, we combined the <a href="programming-guide.html#transformations"><code>flatMap</code></a>, <a href="programming-guide.html#transformations"><code>map</code></a>, and <a href="programming-guide.html#transformations"><code>reduceByKey</code></a> transformations to compute the per-word counts in the file as an RDD of (String, Int) pairs. To collect the word counts in our shell, we can use the <a href="programming-guide.html#actions"><code>collect</code></a> action:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="n">wordCounts</span><span class="o">.</span><span class="n">collect</span><span class="o">()</span>
<span class="n">res6</span><span class="k">:</span> <span class="kt">Array</span><span class="o">[(</span><span class="kt">String</span>, <span class="kt">Int</span><span class="o">)]</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">((</span><span class="n">means</span><span class="o">,</span><span class="mi">1</span><span class="o">),</span> <span class="o">(</span><span class="n">under</span><span class="o">,</span><span class="mi">2</span><span class="o">),</span> <span class="o">(</span><span class="k">this</span><span class="o">,</span><span class="mi">3</span><span class="o">),</span> <span class="o">(</span><span class="nc">Because</span><span class="o">,</span><span class="mi">1</span><span class="o">),</span> <span class="o">(</span><span class="nc">Python</span><span class="o">,</span><span class="mi">2</span><span class="o">),</span> <span class="o">(</span><span class="n">agree</span><span class="o">,</span><span class="mi">1</span><span class="o">),</span> <span class="o">(</span><span class="n">cluster</span><span class="o">.,</span><span class="mi">1</span><span class="o">),</span> <span class="o">...)</span></code></pre></div>
</div>
<div data-lang="python">
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">textFile</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">()))</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span> <span class="k">if</span> <span class="p">(</span><span class="n">a</span> <span class="o">></span> <span class="n">b</span><span class="p">)</span> <span class="k">else</span> <span class="n">b</span><span class="p">)</span>
<span class="mi">15</span></code></pre></div>
<p>This first maps a line to an integer value, creating a new RDD. <code>reduce</code> is called on that RDD to find the largest line count. The arguments to <code>map</code> and <code>reduce</code> are Python <a href="https://docs.python.org/2/reference/expressions.html#lambda">anonymous functions (lambdas)</a>,
but we can also pass any top-level Python function we want.
For example, we’ll define a <code>max</code> function to make this code easier to understand:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="k">def</span> <span class="nf">max</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
<span class="o">...</span> <span class="k">if</span> <span class="n">a</span> <span class="o">></span> <span class="n">b</span><span class="p">:</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">a</span>
<span class="o">...</span> <span class="k">else</span><span class="p">:</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">b</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="n">textFile</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">()))</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="nb">max</span><span class="p">)</span>
<span class="mi">15</span></code></pre></div>
<p>One common data flow pattern is MapReduce, as popularized by Hadoop. Spark can implement MapReduce flows easily:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">wordCounts</span> <span class="o">=</span> <span class="n">textFile</span><span class="o">.</span><span class="n">flatMap</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">())</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">word</span><span class="p">:</span> <span class="p">(</span><span class="n">word</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">+</span><span class="n">b</span><span class="p">)</span></code></pre></div>
<p>Here, we combined the <a href="programming-guide.html#transformations"><code>flatMap</code></a>, <a href="programming-guide.html#transformations"><code>map</code></a>, and <a href="programming-guide.html#transformations"><code>reduceByKey</code></a> transformations to compute the per-word counts in the file as an RDD of (string, int) pairs. To collect the word counts in our shell, we can use the <a href="programming-guide.html#actions"><code>collect</code></a> action:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">wordCounts</span><span class="o">.</span><span class="n">collect</span><span class="p">()</span>
<span class="p">[(</span><span class="s">u'and'</span><span class="p">,</span> <span class="mi">9</span><span class="p">),</span> <span class="p">(</span><span class="s">u'A'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">u'webpage'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">u'README'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">u'Note'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">u'"local"'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="s">u'variable'</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="o">...</span><span class="p">]</span></code></pre></div>
</div>
</div>
<h2 id="caching">Caching</h2>
<p>Spark also supports pulling data sets into a cluster-wide in-memory cache. This is very useful when data is accessed repeatedly, such as when querying a small “hot” dataset or when running an iterative algorithm like PageRank. As a simple example, let’s mark our <code>linesWithSpark</code> dataset to be cached:</p>
<div class="codetabs">
<div data-lang="scala">
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">cache</span><span class="o">()</span>
<span class="n">res7</span><span class="k">:</span> <span class="kt">spark.RDD</span><span class="o">[</span><span class="kt">String</span><span class="o">]</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="nc">FilteredRDD</span><span class="k">@</span><span class="mi">17</span><span class="n">e51082</span>
<span class="n">scala</span><span class="o">></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">count</span><span class="o">()</span>
<span class="n">res8</span><span class="k">:</span> <span class="kt">Long</span> <span class="o">=</span> <span class="mi">19</span>
<span class="n">scala</span><span class="o">></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">count</span><span class="o">()</span>
<span class="n">res9</span><span class="k">:</span> <span class="kt">Long</span> <span class="o">=</span> <span class="mi">19</span></code></pre></div>
<p>It may seem silly to use Spark to explore and cache a 100-line text file. The interesting part is
that these same functions can be used on very large data sets, even when they are striped across
tens or hundreds of nodes. You can also do this interactively by connecting <code>bin/spark-shell</code> to
a cluster, as described in the <a href="programming-guide.html#initializing-spark">programming guide</a>.</p>
</div>
<div data-lang="python">
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">cache</span><span class="p">()</span>
<span class="o">>>></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">count</span><span class="p">()</span>
<span class="mi">19</span>
<span class="o">>>></span> <span class="n">linesWithSpark</span><span class="o">.</span><span class="n">count</span><span class="p">()</span>
<span class="mi">19</span></code></pre></div>
<p>It may seem silly to use Spark to explore and cache a 100-line text file. The interesting part is
that these same functions can be used on very large data sets, even when they are striped across
tens or hundreds of nodes. You can also do this interactively by connecting <code>bin/pyspark</code> to
a cluster, as described in the <a href="programming-guide.html#initializing-spark">programming guide</a>.</p>
</div>
</div>
<h1 id="self-contained-applications">Self-Contained Applications</h1>
<p>Suppose we wish to write a self-contained application using the Spark API. We will walk through a
simple application in Scala (with sbt), Java (with Maven), and Python.</p>
<div class="codetabs">
<div data-lang="scala">
<p>We’ll create a very simple Spark application in Scala–so simple, in fact, that it’s
named <code>SimpleApp.scala</code>:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="cm">/* SimpleApp.scala */</span>
<span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.SparkContext._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.SparkConf</span>
<span class="k">object</span> <span class="nc">SimpleApp</span> <span class="o">{</span>
<span class="k">def</span> <span class="n">main</span><span class="o">(</span><span class="n">args</span><span class="k">:</span> <span class="kt">Array</span><span class="o">[</span><span class="kt">String</span><span class="o">])</span> <span class="o">{</span>
<span class="k">val</span> <span class="n">logFile</span> <span class="k">=</span> <span class="s">"YOUR_SPARK_HOME/README.md"</span> <span class="c1">// Should be some file on your system</span>
<span class="k">val</span> <span class="n">conf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">SparkConf</span><span class="o">().</span><span class="n">setAppName</span><span class="o">(</span><span class="s">"Simple Application"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">sc</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">)</span>
<span class="k">val</span> <span class="n">logData</span> <span class="k">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="o">(</span><span class="n">logFile</span><span class="o">,</span> <span class="mi">2</span><span class="o">).</span><span class="n">cache</span><span class="o">()</span>
<span class="k">val</span> <span class="n">numAs</span> <span class="k">=</span> <span class="n">logData</span><span class="o">.</span><span class="n">filter</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">contains</span><span class="o">(</span><span class="s">"a"</span><span class="o">)).</span><span class="n">count</span><span class="o">()</span>
<span class="k">val</span> <span class="n">numBs</span> <span class="k">=</span> <span class="n">logData</span><span class="o">.</span><span class="n">filter</span><span class="o">(</span><span class="n">line</span> <span class="k">=></span> <span class="n">line</span><span class="o">.</span><span class="n">contains</span><span class="o">(</span><span class="s">"b"</span><span class="o">)).</span><span class="n">count</span><span class="o">()</span>
<span class="n">println</span><span class="o">(</span><span class="s">"Lines with a: %s, Lines with b: %s"</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="n">numAs</span><span class="o">,</span> <span class="n">numBs</span><span class="o">))</span>
<span class="o">}</span>
<span class="o">}</span></code></pre></div>
<p>Note that applications should define a <code>main()</code> method instead of extending <code>scala.App</code>.
Subclasses of <code>scala.App</code> may not work correctly.</p>
<p>This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in the
Spark README. Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is
installed. Unlike the earlier examples with the Spark shell, which initializes its own SparkContext,
we initialize a SparkContext as part of the program.</p>
<p>We pass the SparkContext constructor a
<a href="api/scala/index.html#org.apache.spark.SparkConf">SparkConf</a>
object which contains information about our
application. </p>
<p>Our application depends on the Spark API, so we’ll also include an sbt configuration file,
<code>simple.sbt</code>, which explains that Spark is a dependency. This file also adds a repository that
Spark depends on:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">name</span> <span class="o">:=</span> <span class="s">"Simple Project"</span>
<span class="n">version</span> <span class="o">:=</span> <span class="s">"1.0"</span>
<span class="n">scalaVersion</span> <span class="o">:=</span> <span class="s">"2.11.7"</span>
<span class="n">libraryDependencies</span> <span class="o">+=</span> <span class="s">"org.apache.spark"</span> <span class="o">%%</span> <span class="s">"spark-core"</span> <span class="o">%</span> <span class="s">"2.0.0-SNAPSHOT"</span></code></pre></div>
<p>For sbt to work correctly, we’ll need to layout <code>SimpleApp.scala</code> and <code>simple.sbt</code>
according to the typical directory structure. Once that is in place, we can create a JAR package
containing the application’s code, then use the <code>spark-submit</code> script to run our program.</p>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="c"># Your directory layout should look like this</span>
<span class="nv">$ </span>find .
.
./simple.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala
<span class="c"># Package a jar containing your application</span>
<span class="nv">$ </span>sbt package
...
<span class="o">[</span>info<span class="o">]</span> Packaging <span class="o">{</span>..<span class="o">}</span>/<span class="o">{</span>..<span class="o">}</span>/target/scala-2.10/simple-project_2.10-1.0.jar
<span class="c"># Use spark-submit to run your application</span>
<span class="nv">$ </span>YOUR_SPARK_HOME/bin/spark-submit <span class="se">\</span>
--class <span class="s2">"SimpleApp"</span> <span class="se">\</span>
--master <span class="nb">local</span><span class="o">[</span>4<span class="o">]</span> <span class="se">\</span>
target/scala-2.10/simple-project_2.10-1.0.jar
...
Lines with a: 46, Lines with b: 23</code></pre></div>
</div>
<div data-lang="java">
<p>This example will use Maven to compile an application JAR, but any similar build system will work.</p>
<p>We’ll create a very simple Spark application, <code>SimpleApp.java</code>:</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="cm">/* SimpleApp.java */</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.function.Function</span><span class="o">;</span>
<span class="kd">public</span> <span class="kd">class</span> <span class="nc">SimpleApp</span> <span class="o">{</span>
<span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span>
<span class="n">String</span> <span class="n">logFile</span> <span class="o">=</span> <span class="s">"YOUR_SPARK_HOME/README.md"</span><span class="o">;</span> <span class="c1">// Should be some file on your system</span>
<span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">().</span><span class="na">setAppName</span><span class="o">(</span><span class="s">"Simple Application"</span><span class="o">);</span>
<span class="n">JavaSparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">JavaSparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o"><</span><span class="n">String</span><span class="o">></span> <span class="n">logData</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">logFile</span><span class="o">).</span><span class="na">cache</span><span class="o">();</span>
<span class="kt">long</span> <span class="n">numAs</span> <span class="o">=</span> <span class="n">logData</span><span class="o">.</span><span class="na">filter</span><span class="o">(</span><span class="k">new</span> <span class="n">Function</span><span class="o"><</span><span class="n">String</span><span class="o">,</span> <span class="n">Boolean</span><span class="o">>()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">Boolean</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">s</span><span class="o">)</span> <span class="o">{</span> <span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="na">contains</span><span class="o">(</span><span class="s">"a"</span><span class="o">);</span> <span class="o">}</span>
<span class="o">}).</span><span class="na">count</span><span class="o">();</span>
<span class="kt">long</span> <span class="n">numBs</span> <span class="o">=</span> <span class="n">logData</span><span class="o">.</span><span class="na">filter</span><span class="o">(</span><span class="k">new</span> <span class="n">Function</span><span class="o"><</span><span class="n">String</span><span class="o">,</span> <span class="n">Boolean</span><span class="o">>()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">Boolean</span> <span class="nf">call</span><span class="o">(</span><span class="n">String</span> <span class="n">s</span><span class="o">)</span> <span class="o">{</span> <span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="na">contains</span><span class="o">(</span><span class="s">"b"</span><span class="o">);</span> <span class="o">}</span>
<span class="o">}).</span><span class="na">count</span><span class="o">();</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Lines with a: "</span> <span class="o">+</span> <span class="n">numAs</span> <span class="o">+</span> <span class="s">", lines with b: "</span> <span class="o">+</span> <span class="n">numBs</span><span class="o">);</span>
<span class="o">}</span>
<span class="o">}</span></code></pre></div>
<p>This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in a text
file. Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is installed.
As with the Scala example, we initialize a SparkContext, though we use the special
<code>JavaSparkContext</code> class to get a Java-friendly one. We also create RDDs (represented by
<code>JavaRDD</code>) and run transformations on them. Finally, we pass functions to Spark by creating classes
that extend <code>spark.api.java.function.Function</code>. The
<a href="programming-guide.html">Spark programming guide</a> describes these differences in more detail.</p>
<p>To build the program, we also write a Maven <code>pom.xml</code> file that lists Spark as a dependency.
Note that Spark artifacts are tagged with a Scala version.</p>
<div class="highlight"><pre><code class="language-xml" data-lang="xml"><span class="nt"><project></span>
<span class="nt"><groupId></span>edu.berkeley<span class="nt"></groupId></span>
<span class="nt"><artifactId></span>simple-project<span class="nt"></artifactId></span>
<span class="nt"><modelVersion></span>4.0.0<span class="nt"></modelVersion></span>
<span class="nt"><name></span>Simple Project<span class="nt"></name></span>
<span class="nt"><packaging></span>jar<span class="nt"></packaging></span>
<span class="nt"><version></span>1.0<span class="nt"></version></span>
<span class="nt"><dependencies></span>
<span class="nt"><dependency></span> <span class="c"><!-- Spark dependency --></span>
<span class="nt"><groupId></span>org.apache.spark<span class="nt"></groupId></span>
<span class="nt"><artifactId></span>spark-core_2.11<span class="nt"></artifactId></span>
<span class="nt"><version></span>2.0.0-SNAPSHOT<span class="nt"></version></span>
<span class="nt"></dependency></span>
<span class="nt"></dependencies></span>
<span class="nt"></project></span></code></pre></div>
<p>We lay out these files according to the canonical Maven directory structure:</p>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="nv">$ </span>find .
./pom.xml
./src
./src/main
./src/main/java
./src/main/java/SimpleApp.java</code></pre></div>
<p>Now, we can package the application using Maven and execute it with <code>./bin/spark-submit</code>.</p>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="c"># Package a JAR containing your application</span>
<span class="nv">$ </span>mvn package
...
<span class="o">[</span>INFO<span class="o">]</span> Building jar: <span class="o">{</span>..<span class="o">}</span>/<span class="o">{</span>..<span class="o">}</span>/target/simple-project-1.0.jar
<span class="c"># Use spark-submit to run your application</span>
<span class="nv">$ </span>YOUR_SPARK_HOME/bin/spark-submit <span class="se">\</span>
--class <span class="s2">"SimpleApp"</span> <span class="se">\</span>
--master <span class="nb">local</span><span class="o">[</span>4<span class="o">]</span> <span class="se">\</span>
target/simple-project-1.0.jar
...
Lines with a: 46, Lines with b: 23</code></pre></div>
</div>
<div data-lang="python">
<p>Now we will show how to write an application using the Python API (PySpark).</p>
<p>As an example, we’ll create a simple Spark application, <code>SimpleApp.py</code>:</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="sd">"""SimpleApp.py"""</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="n">logFile</span> <span class="o">=</span> <span class="s">"YOUR_SPARK_HOME/README.md"</span> <span class="c"># Should be some file on your system</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s">"local"</span><span class="p">,</span> <span class="s">"Simple App"</span><span class="p">)</span>
<span class="n">logData</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="n">logFile</span><span class="p">)</span><span class="o">.</span><span class="n">cache</span><span class="p">()</span>
<span class="n">numAs</span> <span class="o">=</span> <span class="n">logData</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">s</span><span class="p">:</span> <span class="s">'a'</span> <span class="ow">in</span> <span class="n">s</span><span class="p">)</span><span class="o">.</span><span class="n">count</span><span class="p">()</span>
<span class="n">numBs</span> <span class="o">=</span> <span class="n">logData</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">s</span><span class="p">:</span> <span class="s">'b'</span> <span class="ow">in</span> <span class="n">s</span><span class="p">)</span><span class="o">.</span><span class="n">count</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Lines with a: </span><span class="si">%i</span><span class="s">, lines with b: </span><span class="si">%i</span><span class="s">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">numAs</span><span class="p">,</span> <span class="n">numBs</span><span class="p">))</span></code></pre></div>
<p>This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in a
text file.
Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is installed.
As with the Scala and Java examples, we use a SparkContext to create RDDs.
We can pass Python functions to Spark, which are automatically serialized along with any variables
that they reference.
For applications that use custom classes or third-party libraries, we can also add code
dependencies to <code>spark-submit</code> through its <code>--py-files</code> argument by packaging them into a
.zip file (see <code>spark-submit --help</code> for details).
<code>SimpleApp</code> is simple enough that we do not need to specify any code dependencies.</p>
<p>We can run this application using the <code>bin/spark-submit</code> script:</p>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="c"># Use spark-submit to run your application</span>
<span class="nv">$ </span>YOUR_SPARK_HOME/bin/spark-submit <span class="se">\</span>
--master <span class="nb">local</span><span class="o">[</span>4<span class="o">]</span> <span class="se">\</span>
SimpleApp.py
...
Lines with a: 46, Lines with b: 23</code></pre></div>
</div>
</div>
<h1 id="where-to-go-from-here">Where to Go from Here</h1>
<p>Congratulations on running your first Spark application!</p>
<ul>
<li>For an in-depth overview of the API, start with the <a href="programming-guide.html">Spark programming guide</a>,
or see “Programming Guides” menu for other components.</li>
<li>For running applications on a cluster, head to the <a href="cluster-overview.html">deployment overview</a>.</li>
<li>Finally, Spark includes several samples in the <code>examples</code> directory
(<a href="https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples">Scala</a>,
<a href="https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples">Java</a>,
<a href="https://github.com/apache/spark/tree/master/examples/src/main/python">Python</a>,
<a href="https://github.com/apache/spark/tree/master/examples/src/main/r">R</a>).
You can run them as follows:</li>
</ul>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="c"># For Scala and Java, use run-example:</span>
./bin/run-example SparkPi
<span class="c"># For Python examples, use spark-submit directly:</span>
./bin/spark-submit examples/src/main/python/pi.py
<span class="c"># For R examples, use spark-submit directly:</span>
./bin/spark-submit examples/src/main/r/dataframe.R</code></pre></div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>