-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathspark-standalone.html
executable file
·550 lines (453 loc) · 31.9 KB
/
spark-standalone.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Spark Standalone Mode - Spark 2.0.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.0.0</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">DataFrames, Datasets and SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.0.0</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="content" id="content">
<h1 class="title">Spark Standalone Mode</h1>
<ul id="markdown-toc">
<li><a href="#installing-spark-standalone-to-a-cluster">Installing Spark Standalone to a Cluster</a></li>
<li><a href="#starting-a-cluster-manually">Starting a Cluster Manually</a></li>
<li><a href="#cluster-launch-scripts">Cluster Launch Scripts</a></li>
<li><a href="#connecting-an-application-to-the-cluster">Connecting an Application to the Cluster</a></li>
<li><a href="#launching-spark-applications">Launching Spark Applications</a></li>
<li><a href="#resource-scheduling">Resource Scheduling</a></li>
<li><a href="#monitoring-and-logging">Monitoring and Logging</a></li>
<li><a href="#running-alongside-hadoop">Running Alongside Hadoop</a></li>
<li><a href="#configuring-ports-for-network-security">Configuring Ports for Network Security</a></li>
<li><a href="#high-availability">High Availability</a> <ul>
<li><a href="#standby-masters-with-zookeeper">Standby Masters with ZooKeeper</a></li>
<li><a href="#single-node-recovery-with-local-file-system">Single-Node Recovery with Local File System</a></li>
</ul>
</li>
</ul>
<p>In addition to running on the Mesos or YARN cluster managers, Spark also provides a simple standalone deploy mode. You can launch a standalone cluster either manually, by starting a master and workers by hand, or use our provided <a href="#cluster-launch-scripts">launch scripts</a>. It is also possible to run these daemons on a single machine for testing.</p>
<h1 id="installing-spark-standalone-to-a-cluster">Installing Spark Standalone to a Cluster</h1>
<p>To install Spark Standalone mode, you simply place a compiled version of Spark on each node on the cluster. You can obtain pre-built versions of Spark with each release or <a href="building-spark.html">build it yourself</a>.</p>
<h1 id="starting-a-cluster-manually">Starting a Cluster Manually</h1>
<p>You can start a standalone master server by executing:</p>
<pre><code>./sbin/start-master.sh
</code></pre>
<p>Once started, the master will print out a <code>spark://HOST:PORT</code> URL for itself, which you can use to connect workers to it,
or pass as the “master” argument to <code>SparkContext</code>. You can also find this URL on
the master’s web UI, which is <a href="http://localhost:8080">http://localhost:8080</a> by default.</p>
<p>Similarly, you can start one or more workers and connect them to the master via:</p>
<pre><code>./sbin/start-slave.sh <master-spark-URL>
</code></pre>
<p>Once you have started a worker, look at the master’s web UI (<a href="http://localhost:8080">http://localhost:8080</a> by default).
You should see the new node listed there, along with its number of CPUs and memory (minus one gigabyte left for the OS).</p>
<p>Finally, the following configuration options can be passed to the master and worker:</p>
<table class="table">
<tr><th style="width:21%">Argument</th><th>Meaning</th></tr>
<tr>
<td><code>-h HOST</code>, <code>--host HOST</code></td>
<td>Hostname to listen on</td>
</tr>
<tr>
<td><code>-i HOST</code>, <code>--ip HOST</code></td>
<td>Hostname to listen on (deprecated, use -h or --host)</td>
</tr>
<tr>
<td><code>-p PORT</code>, <code>--port PORT</code></td>
<td>Port for service to listen on (default: 7077 for master, random for worker)</td>
</tr>
<tr>
<td><code>--webui-port PORT</code></td>
<td>Port for web UI (default: 8080 for master, 8081 for worker)</td>
</tr>
<tr>
<td><code>-c CORES</code>, <code>--cores CORES</code></td>
<td>Total CPU cores to allow Spark applications to use on the machine (default: all available); only on worker</td>
</tr>
<tr>
<td><code>-m MEM</code>, <code>--memory MEM</code></td>
<td>Total amount of memory to allow Spark applications to use on the machine, in a format like 1000M or 2G (default: your machine's total RAM minus 1 GB); only on worker</td>
</tr>
<tr>
<td><code>-d DIR</code>, <code>--work-dir DIR</code></td>
<td>Directory to use for scratch space and job output logs (default: SPARK_HOME/work); only on worker</td>
</tr>
<tr>
<td><code>--properties-file FILE</code></td>
<td>Path to a custom Spark properties file to load (default: conf/spark-defaults.conf)</td>
</tr>
</table>
<h1 id="cluster-launch-scripts">Cluster Launch Scripts</h1>
<p>To launch a Spark standalone cluster with the launch scripts, you should create a file called conf/slaves in your Spark directory,
which must contain the hostnames of all the machines where you intend to start Spark workers, one per line.
If conf/slaves does not exist, the launch scripts defaults to a single machine (localhost), which is useful for testing.
Note, the master machine accesses each of the worker machines via ssh. By default, ssh is run in parallel and requires password-less (using a private key) access to be setup.
If you do not have a password-less setup, you can set the environment variable SPARK_SSH_FOREGROUND and serially provide a password for each worker.</p>
<p>Once you’ve set up this file, you can launch or stop your cluster with the following shell scripts, based on Hadoop’s deploy scripts, and available in <code>SPARK_HOME/sbin</code>:</p>
<ul>
<li><code>sbin/start-master.sh</code> - Starts a master instance on the machine the script is executed on.</li>
<li><code>sbin/start-slaves.sh</code> - Starts a slave instance on each machine specified in the <code>conf/slaves</code> file.</li>
<li><code>sbin/start-slave.sh</code> - Starts a slave instance on the machine the script is executed on.</li>
<li><code>sbin/start-all.sh</code> - Starts both a master and a number of slaves as described above.</li>
<li><code>sbin/stop-master.sh</code> - Stops the master that was started via the <code>bin/start-master.sh</code> script.</li>
<li><code>sbin/stop-slaves.sh</code> - Stops all slave instances on the machines specified in the <code>conf/slaves</code> file.</li>
<li><code>sbin/stop-all.sh</code> - Stops both the master and the slaves as described above.</li>
</ul>
<p>Note that these scripts must be executed on the machine you want to run the Spark master on, not your local machine.</p>
<p>You can optionally configure the cluster further by setting environment variables in <code>conf/spark-env.sh</code>. Create this file by starting with the <code>conf/spark-env.sh.template</code>, and <em>copy it to all your worker machines</em> for the settings to take effect. The following settings are available:</p>
<table class="table">
<tr><th style="width:21%">Environment Variable</th><th>Meaning</th></tr>
<tr>
<td><code>SPARK_MASTER_IP</code></td>
<td>Bind the master to a specific IP address, for example a public one.</td>
</tr>
<tr>
<td><code>SPARK_MASTER_PORT</code></td>
<td>Start the master on a different port (default: 7077).</td>
</tr>
<tr>
<td><code>SPARK_MASTER_WEBUI_PORT</code></td>
<td>Port for the master web UI (default: 8080).</td>
</tr>
<tr>
<td><code>SPARK_MASTER_OPTS</code></td>
<td>Configuration properties that apply only to the master in the form "-Dx=y" (default: none). See below for a list of possible options.</td>
</tr>
<tr>
<td><code>SPARK_LOCAL_DIRS</code></td>
<td>
Directory to use for "scratch" space in Spark, including map output files and RDDs that get
stored on disk. This should be on a fast, local disk in your system. It can also be a
comma-separated list of multiple directories on different disks.
</td>
</tr>
<tr>
<td><code>SPARK_WORKER_CORES</code></td>
<td>Total number of cores to allow Spark applications to use on the machine (default: all available cores).</td>
</tr>
<tr>
<td><code>SPARK_WORKER_MEMORY</code></td>
<td>Total amount of memory to allow Spark applications to use on the machine, e.g. <code>1000m</code>, <code>2g</code> (default: total memory minus 1 GB); note that each application's <i>individual</i> memory is configured using its <code>spark.executor.memory</code> property.</td>
</tr>
<tr>
<td><code>SPARK_WORKER_PORT</code></td>
<td>Start the Spark worker on a specific port (default: random).</td>
</tr>
<tr>
<td><code>SPARK_WORKER_WEBUI_PORT</code></td>
<td>Port for the worker web UI (default: 8081).</td>
</tr>
<tr>
<td><code>SPARK_WORKER_INSTANCES</code></td>
<td>
Number of worker instances to run on each machine (default: 1). You can make this more than 1 if
you have have very large machines and would like multiple Spark worker processes. If you do set
this, make sure to also set <code>SPARK_WORKER_CORES</code> explicitly to limit the cores per worker,
or else each worker will try to use all the cores.
</td>
</tr>
<tr>
<td><code>SPARK_WORKER_DIR</code></td>
<td>Directory to run applications in, which will include both logs and scratch space (default: SPARK_HOME/work).</td>
</tr>
<tr>
<td><code>SPARK_WORKER_OPTS</code></td>
<td>Configuration properties that apply only to the worker in the form "-Dx=y" (default: none). See below for a list of possible options.</td>
</tr>
<tr>
<td><code>SPARK_DAEMON_MEMORY</code></td>
<td>Memory to allocate to the Spark master and worker daemons themselves (default: 1g).</td>
</tr>
<tr>
<td><code>SPARK_DAEMON_JAVA_OPTS</code></td>
<td>JVM options for the Spark master and worker daemons themselves in the form "-Dx=y" (default: none).</td>
</tr>
<tr>
<td><code>SPARK_PUBLIC_DNS</code></td>
<td>The public DNS name of the Spark master and workers (default: none).</td>
</tr>
</table>
<p><strong>Note:</strong> The launch scripts do not currently support Windows. To run a Spark cluster on Windows, start the master and workers by hand.</p>
<p>SPARK_MASTER_OPTS supports the following system properties:</p>
<table class="table">
<tr><th>Property Name</th><th>Default</th><th>Meaning</th></tr>
<tr>
<td><code>spark.deploy.retainedApplications</code></td>
<td>200</td>
<td>
The maximum number of completed applications to display. Older applications will be dropped from the UI to maintain this limit.<br />
</td>
</tr>
<tr>
<td><code>spark.deploy.retainedDrivers</code></td>
<td>200</td>
<td>
The maximum number of completed drivers to display. Older drivers will be dropped from the UI to maintain this limit.<br />
</td>
</tr>
<tr>
<td><code>spark.deploy.spreadOut</code></td>
<td>true</td>
<td>
Whether the standalone cluster manager should spread applications out across nodes or try
to consolidate them onto as few nodes as possible. Spreading out is usually better for
data locality in HDFS, but consolidating is more efficient for compute-intensive workloads. <br />
</td>
</tr>
<tr>
<td><code>spark.deploy.defaultCores</code></td>
<td>(infinite)</td>
<td>
Default number of cores to give to applications in Spark's standalone mode if they don't
set <code>spark.cores.max</code>. If not set, applications always get all available
cores unless they configure <code>spark.cores.max</code> themselves.
Set this lower on a shared cluster to prevent users from grabbing
the whole cluster by default. <br />
</td>
</tr>
<tr>
<td><code>spark.worker.timeout</code></td>
<td>60</td>
<td>
Number of seconds after which the standalone deploy master considers a worker lost if it
receives no heartbeats.
</td>
</tr>
</table>
<p>SPARK_WORKER_OPTS supports the following system properties:</p>
<table class="table">
<tr><th>Property Name</th><th>Default</th><th>Meaning</th></tr>
<tr>
<td><code>spark.worker.cleanup.enabled</code></td>
<td>false</td>
<td>
Enable periodic cleanup of worker / application directories. Note that this only affects standalone
mode, as YARN works differently. Only the directories of stopped applications are cleaned up.
</td>
</tr>
<tr>
<td><code>spark.worker.cleanup.interval</code></td>
<td>1800 (30 minutes)</td>
<td>
Controls the interval, in seconds, at which the worker cleans up old application work dirs
on the local machine.
</td>
</tr>
<tr>
<td><code>spark.worker.cleanup.appDataTtl</code></td>
<td>7 * 24 * 3600 (7 days)</td>
<td>
The number of seconds to retain application work directories on each worker. This is a Time To Live
and should depend on the amount of available disk space you have. Application logs and jars are
downloaded to each application work dir. Over time, the work dirs can quickly fill up disk space,
especially if you run jobs very frequently.
</td>
</tr>
</table>
<h1 id="connecting-an-application-to-the-cluster">Connecting an Application to the Cluster</h1>
<p>To run an application on the Spark cluster, simply pass the <code>spark://IP:PORT</code> URL of the master as to the <a href="programming-guide.html#initializing-spark"><code>SparkContext</code>
constructor</a>.</p>
<p>To run an interactive Spark shell against the cluster, run the following command:</p>
<pre><code>./bin/spark-shell --master spark://IP:PORT
</code></pre>
<p>You can also pass an option <code>--total-executor-cores <numCores></code> to control the number of cores that spark-shell uses on the cluster.</p>
<h1 id="launching-spark-applications">Launching Spark Applications</h1>
<p>The <a href="submitting-applications.html"><code>spark-submit</code> script</a> provides the most straightforward way to
submit a compiled Spark application to the cluster. For standalone clusters, Spark currently
supports two deploy modes. In <code>client</code> mode, the driver is launched in the same process as the
client that submits the application. In <code>cluster</code> mode, however, the driver is launched from one
of the Worker processes inside the cluster, and the client process exits as soon as it fulfills
its responsibility of submitting the application without waiting for the application to finish.</p>
<p>If your application is launched through Spark submit, then the application jar is automatically
distributed to all worker nodes. For any additional jars that your application depends on, you
should specify them through the <code>--jars</code> flag using comma as a delimiter (e.g. <code>--jars jar1,jar2</code>).
To control the application’s configuration or execution environment, see
<a href="configuration.html">Spark Configuration</a>.</p>
<p>Additionally, standalone <code>cluster</code> mode supports restarting your application automatically if it
exited with non-zero exit code. To use this feature, you may pass in the <code>--supervise</code> flag to
<code>spark-submit</code> when launching your application. Then, if you wish to kill an application that is
failing repeatedly, you may do so through:</p>
<pre><code>./bin/spark-class org.apache.spark.deploy.Client kill <master url> <driver ID>
</code></pre>
<p>You can find the driver ID through the standalone Master web UI at <code>http://<master url>:8080</code>.</p>
<h1 id="resource-scheduling">Resource Scheduling</h1>
<p>The standalone cluster mode currently only supports a simple FIFO scheduler across applications.
However, to allow multiple concurrent users, you can control the maximum number of resources each
application will use.
By default, it will acquire <em>all</em> cores in the cluster, which only makes sense if you just run one
application at a time. You can cap the number of cores by setting <code>spark.cores.max</code> in your
<a href="configuration.html#spark-properties">SparkConf</a>. For example:</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">val</span> <span class="n">conf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">SparkConf</span><span class="o">()</span>
<span class="o">.</span><span class="n">setMaster</span><span class="o">(...)</span>
<span class="o">.</span><span class="n">setAppName</span><span class="o">(...)</span>
<span class="o">.</span><span class="n">set</span><span class="o">(</span><span class="s">"spark.cores.max"</span><span class="o">,</span> <span class="s">"10"</span><span class="o">)</span>
<span class="k">val</span> <span class="n">sc</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">)</span></code></pre></div>
<p>In addition, you can configure <code>spark.deploy.defaultCores</code> on the cluster master process to change the
default for applications that don’t set <code>spark.cores.max</code> to something less than infinite.
Do this by adding the following to <code>conf/spark-env.sh</code>:</p>
<div class="highlight"><pre><code class="language-bash" data-lang="bash"><span class="nb">export </span><span class="nv">SPARK_MASTER_OPTS</span><span class="o">=</span><span class="s2">"-Dspark.deploy.defaultCores=<value>"</span></code></pre></div>
<p>This is useful on shared clusters where users might not have configured a maximum number of cores
individually.</p>
<h1 id="monitoring-and-logging">Monitoring and Logging</h1>
<p>Spark’s standalone mode offers a web-based user interface to monitor the cluster. The master and each worker has its own web UI that shows cluster and job statistics. By default you can access the web UI for the master at port 8080. The port can be changed either in the configuration file or via command-line options.</p>
<p>In addition, detailed log output for each job is also written to the work directory of each slave node (<code>SPARK_HOME/work</code> by default). You will see two files for each job, <code>stdout</code> and <code>stderr</code>, with all output it wrote to its console.</p>
<h1 id="running-alongside-hadoop">Running Alongside Hadoop</h1>
<p>You can run Spark alongside your existing Hadoop cluster by just launching it as a separate service on the same machines. To access Hadoop data from Spark, just use a hdfs:// URL (typically <code>hdfs://<namenode>:9000/path</code>, but you can find the right URL on your Hadoop Namenode’s web UI). Alternatively, you can set up a separate cluster for Spark, and still have it access HDFS over the network; this will be slower than disk-local access, but may not be a concern if you are still running in the same local area network (e.g. you place a few Spark machines on each rack that you have Hadoop on).</p>
<h1 id="configuring-ports-for-network-security">Configuring Ports for Network Security</h1>
<p>Spark makes heavy use of the network, and some environments have strict requirements for using
tight firewall settings. For a complete list of ports to configure, see the
<a href="security.html#configuring-ports-for-network-security">security page</a>.</p>
<h1 id="high-availability">High Availability</h1>
<p>By default, standalone scheduling clusters are resilient to Worker failures (insofar as Spark itself is resilient to losing work by moving it to other workers). However, the scheduler uses a Master to make scheduling decisions, and this (by default) creates a single point of failure: if the Master crashes, no new applications can be created. In order to circumvent this, we have two high availability schemes, detailed below.</p>
<h2 id="standby-masters-with-zookeeper">Standby Masters with ZooKeeper</h2>
<p><strong>Overview</strong></p>
<p>Utilizing ZooKeeper to provide leader election and some state storage, you can launch multiple Masters in your cluster connected to the same ZooKeeper instance. One will be elected “leader” and the others will remain in standby mode. If the current leader dies, another Master will be elected, recover the old Master’s state, and then resume scheduling. The entire recovery process (from the time the first leader goes down) should take between 1 and 2 minutes. Note that this delay only affects scheduling <em>new</em> applications – applications that were already running during Master failover are unaffected.</p>
<p>Learn more about getting started with ZooKeeper <a href="http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html">here</a>.</p>
<p><strong>Configuration</strong></p>
<p>In order to enable this recovery mode, you can set SPARK_DAEMON_JAVA_OPTS in spark-env by configuring <code>spark.deploy.recoveryMode</code> and related spark.deploy.zookeeper.* configurations.
For more information about these configurations please refer to the configurations (doc)[configurations.html#deploy]</p>
<p>Possible gotcha: If you have multiple Masters in your cluster but fail to correctly configure the Masters to use ZooKeeper, the Masters will fail to discover each other and think they’re all leaders. This will not lead to a healthy cluster state (as all Masters will schedule independently).</p>
<p><strong>Details</strong></p>
<p>After you have a ZooKeeper cluster set up, enabling high availability is straightforward. Simply start multiple Master processes on different nodes with the same ZooKeeper configuration (ZooKeeper URL and directory). Masters can be added and removed at any time.</p>
<p>In order to schedule new applications or add Workers to the cluster, they need to know the IP address of the current leader. This can be accomplished by simply passing in a list of Masters where you used to pass in a single one. For example, you might start your SparkContext pointing to <code>spark://host1:port1,host2:port2</code>. This would cause your SparkContext to try registering with both Masters – if <code>host1</code> goes down, this configuration would still be correct as we’d find the new leader, <code>host2</code>.</p>
<p>There’s an important distinction to be made between “registering with a Master” and normal operation. When starting up, an application or Worker needs to be able to find and register with the current lead Master. Once it successfully registers, though, it is “in the system” (i.e., stored in ZooKeeper). If failover occurs, the new leader will contact all previously registered applications and Workers to inform them of the change in leadership, so they need not even have known of the existence of the new Master at startup.</p>
<p>Due to this property, new Masters can be created at any time, and the only thing you need to worry about is that <em>new</em> applications and Workers can find it to register with in case it becomes the leader. Once registered, you’re taken care of.</p>
<h2 id="single-node-recovery-with-local-file-system">Single-Node Recovery with Local File System</h2>
<p><strong>Overview</strong></p>
<p>ZooKeeper is the best way to go for production-level high availability, but if you just want to be able to restart the Master if it goes down, FILESYSTEM mode can take care of it. When applications and Workers register, they have enough state written to the provided directory so that they can be recovered upon a restart of the Master process.</p>
<p><strong>Configuration</strong></p>
<p>In order to enable this recovery mode, you can set SPARK_DAEMON_JAVA_OPTS in spark-env using this configuration:</p>
<table class="table">
<tr><th style="width:21%">System property</th><th>Meaning</th></tr>
<tr>
<td><code>spark.deploy.recoveryMode</code></td>
<td>Set to FILESYSTEM to enable single-node recovery mode (default: NONE).</td>
</tr>
<tr>
<td><code>spark.deploy.recoveryDirectory</code></td>
<td>The directory in which Spark will store recovery state, accessible from the Master's perspective.</td>
</tr>
</table>
<p><strong>Details</strong></p>
<ul>
<li>This solution can be used in tandem with a process monitor/manager like <a href="http://mmonit.com/monit/">monit</a>, or just to enable manual recovery via restart.</li>
<li>While filesystem recovery seems straightforwardly better than not doing any recovery at all, this mode may be suboptimal for certain development or experimental purposes. In particular, killing a master via stop-master.sh does not clean up its recovery state, so whenever you start a new Master, it will enter recovery mode. This could increase the startup time by up to 1 minute if it needs to wait for all previously-registered Workers/clients to timeout.</li>
<li>While it’s not officially supported, you could mount an NFS directory as the recovery directory. If the original Master node dies completely, you could then start a Master on a different node, which would correctly recover all previously registered Workers/applications (equivalent to ZooKeeper recovery). Future applications will have to be able to find the new Master, however, in order to register.</li>
</ul>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>