-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathvoterModels.py
387 lines (311 loc) · 12.3 KB
/
voterModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from mydecorators import autoassign, cached_property, setdefaultattr
import random
from numpy.lib.scimath import sqrt
from numpy.core.fromnumeric import mean, std
from numpy.lib.function_base import median
from numpy.ma.core import floor
from scipy.stats import beta
from test.test_binop import isnum
from debugDump import *
class Voter(tuple):
"""A tuple of candidate utilities.
"""
@classmethod
def rand(cls, ncand):
"""Create a random voter with an independent standard normal
utility for each candidate.
ncand determines the number of candidates a voter should have
utilities for.
>>> [len(Voter.rand(i)) for i in list(range(5))]
[0, 1, 2, 3, 4]
utilities should be in a standard normal distribution
>>> v100 = Voter.rand(100)
>>> -0.3 < mean(v100) < 0.3
True
>>> 0.8 < std(v100) < 1.2
True
"""
return cls(random.gauss(0,1) for _ in range(ncand))
def hybridWith(self, v2, w2):
"""Create a weighted average of two voters.
The weight of v1 is always 1; w2 is the weight of v2 relative to that.
If both are
standard normal to start with, the result will be standard normal too.
Length must be the same
>>> Voter([1,2]).hybridWith(Voter([1,2,3]),1)
Traceback (most recent call last):
...
AssertionError
A couple of basic sanity checks:
>>> v2 = Voter([1,2]).hybridWith(Voter([3,2]),1)
>>> [round(u,5) for u in v2.hybridWith(v2,1)]
[4.0, 4.0]
>>> Voter([1,2,5]).hybridWith(Voter([-0.5,-1,0]),0.75)
(0.5, 1.0, 4.0)
"""
assert len(self) == len(v2)
return self.copyWithUtils( ((self[i] / sqrt(1 + w2 ** 2)) +
(w2 * v2[i] / sqrt(1 + w2 ** 2)))
for i in range(len(self)))
def copyWithUtils(self, utils):
"""create a new voter with attrs as self and given utils.
This version is a stub, since this voter class has no attrs."""
return self.__class__(utils)
def mutantChild(self, muteWeight):
"""Returns a copy hybridized with a random voter of weight muteWeight.
Should remain standard normal:
>>> v100 = Voter.rand(100)
>>> for i in range(30):
... v100 = v100.mutantChild(random.random())
...
>>> -0.3 < mean(v100) < 0.3 #3 sigma
True
>>> 0.8 < std(v100) < 1.2 #meh that's roughly 3 sigma
True
"""
return self.hybridWith(self.__class__.rand(len(self)), muteWeight)
class PersonalityVoter(Voter):
cluster_count = 0
def __init__(self, *args, **kw):
super().__init__()#*args, **kw) #WTF, python?
self.cluster = self.__class__.cluster_count
self.__class__.cluster_count += 1
self.personality = random.gauss(0,1) #probably to be used for strategic propensity
#but in future, could be other clustering voter variability, such as media awareness
#@classmethod
#def rand(cls, ncand):
# voter = super().rand(ncand)
# return voter
@classmethod
def resetClusters(cls):
cls.cluster_count = 0
def copyWithUtils(self, utils):
voter = super().copyWithUtils(utils)
voter.copyAttrsFrom(self)
return voter
def copyAttrsFrom(self, model):
self.personality = model.personality
self.cluster = model.cluster
class Electorate(list):
"""A list of voters.
Each voter is a list of candidate utilities"""
@cached_property
def socUtils(self):
"""Return mean utility across electorate for each candidate: their social utilities.
>>> e = Electorate([[1,2],[3,4]])
>>> e.socUtils
[2.0, 3.0]
"""
return list(map(mean,zip(*self)))
class RandomModel:
"""Empty base class for election models; that is, electorate factories.
>>> e4 = RandomModel()(4,3)
>>> [len(v) for v in e4]
[3, 3, 3, 3]
"""
def __str__(self):
return self.__class__.__name__
def __call__(self, nvot, ncand, vType=PersonalityVoter):
return Electorate(vType.rand(ncand) for _ in range(nvot))
class DeterministicModel(RandomModel):
"""Basically, a somewhat non-boring stub for testing.
>>> DeterministicModel(3)(4, 3)
[(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 1, 2)]
"""
@autoassign
def __init__(self, modulo):
pass
def __call__(self, nvot, ncand, vType=PersonalityVoter):
return Electorate(vType((i+j)%self.modulo for i in range(ncand))
for j in range(nvot))
class ReverseModel(RandomModel):
"""Creates an even number of voters in two diametrically-opposed camps
(ie, opposite utilities for all candidates)
>>> e4 = ReverseModel()(4,3)
>>> [len(v) for v in e4]
[3, 3, 3, 3]
>>> e4[0].hybridWith(e4[3],1)
(0.0, 0.0, 0.0)
"""
def __call__(self, nvot, ncand, vType=PersonalityVoter):
if nvot % 2:
raise ValueError
basevoter = vType.rand(ncand)
return Electorate( ([basevoter] * (nvot//2)) +
([vType(-q for q in basevoter)] * (nvot//2))
)
class QModel(RandomModel):
"""Adds a quality dimension to a base model,
by generating an election and then hybridizing all voters
with a common quality vector.
Useful along with ReverseModel to create a poor-man's 2d model.
Basic structure
>>> e4 = QModel(sqrt(3), RandomModel())(100,1)
>>> len(e4)
100
>>> len(e4.socUtils)
1
Reduces the standard deviation
>>> 0.4 < std(list(zip(e4))) < 0.6
True
"""
@autoassign
def __init__(self, qWeight=0.5, baseModel=ReverseModel()):
pass
def __call__(self, nvot, ncand, vType=PersonalityVoter):
qualities = vType.rand(ncand)
return Electorate([v.hybridWith(qualities,self.qWeight)
for v in self.baseModel(nvot, ncand, vType)])
class PolyaModel(RandomModel):
"""This creates electorates based on a Polya/Hoppe/Dirichlet model, with mutation.
You start with an "urn" of n=seedVoter voters from seedModel,
plus alpha "wildcard" voters. Then you draw a voter from the urn,
clone and mutate them, and put the original and clone back into the urn.
If you draw a "wildcard", use voterGen to make a new voter.
"""
@autoassign
def __init__(self, seedVoters=2, alpha=1, seedModel=QModel(),
mutantFactor=0.2):
pass
def __call__(self, nvot, ncand, vType=PersonalityVoter):
"""Tests? Making statistical tests that would pass reliably is
a huge hassle. Sorry, maybe later.
"""
vType.resetClusters()
election = self.seedModel(self.seedVoters, ncand, vType)
while len(election) < nvot:
i = random.randrange(len(election) + self.alpha)
if i < len(election):
election.append(election[i].mutantChild(self.mutantFactor))
else:
election.append(vType.rand(ncand))
return election
class DimVoter(PersonalityVoter):
"""A voter in an n-dimensional model.
"""
@classmethod
def fromDims(cls, v, e, caring = None):
if caring is None:
caring = [1] * len(v)
totCaring = e.totWeight
else:
totCaring = sum((c*w)**2 for c,w in zip(caring, e.dimWeights))
me = cls(-sqrt(
sum(((vd - cd)*w*cares)**2 for (vd, cd, w, cares) in zip(v,c,e.dimWeights,caring)) /
totCaring)
for c in e.cands)
me.copyAttrsFrom(v)
me.dims = v
me.elec = e
return me
class DimElectorate(Electorate):
def asDims(self, v, *args):
return v
def fromDims(self, dimvoters, vType):
for v in dimvoters:
self.append(vType.fromDims(v,self))
def calcTotWeight(self):
self.totWeight = sum(w**2 for w in self.dimWeights)
class DimModel(RandomModel):
"""
>>> dm = DimModel(2,baseElectorate=DeterministicModel(3))
>>> dm(2,4)
[(4.25, 0.0, 1.25, 4.25), (2.0, 1.25, 0.0, 2.0)]
>>> dm.dimWeights
[1, 0.5]
"""
builtElectorate = DimElectorate
@autoassign
def __init__(self, ndims=3, dimWeights=None, baseElectorate=RandomModel()):
if self.dimWeights is None:
self.dimWeights = [2**(-n) for n in range(ndims)]
assert(len(self.dimWeights) == self.ndims)
def __call__(self, nvot, ncand, vType=DimVoter):
elec = self.builtElectorate()
elec.dimWeights = self.dimWeights
return self.makeElectorate(elec, nvot, ncand, vType)
def makeElectorate(self, elec, nvot, ncand, vType):
elec.calcTotWeight()
votersncands = self.baseElectorate(nvot + ncand, len(elec.dimWeights), vType)
elec.base = [elec.asDims(v,i) for i,v in enumerate(votersncands[:nvot])]
elec.cands = [elec.asDims(v,nvot+i) for i,v in enumerate(votersncands[nvot:])]
elec.fromDims(elec.base, vType)
return elec
def rbeta(a,b):
return lambda: beta.rvs(a,b)
unishdist = rbeta(1,.8)
caresDist = rbeta(3,1.5)
class KSElectorate(DimElectorate):
def chooseClusters(self, n, alpha, caring):
self.clusters = []
for i in range(n):
item = []
for c in range(self.numClusters):
r = (i+alpha) * random.random()
if r > i:
item.append(self.numSubclusters[c])
self.numSubclusters[c] += 1
else:
item.append(self.clusters[int(r)][c])
self.clusters.append(item)
self.clusterMeans = []
self.clusterCaring = []
for c in range(self.numClusters):
subclusterMeans = []
subclusterCaring = []
for _ in range(self.numSubclusters[c]):
cares = caring()
subclusterMeans.append(
[random.gauss(0, sqrt(cares)) for _ in range(self.dcs[c])]
)
subclusterCaring.append(caring())
self.clusterMeans.append(subclusterMeans)
self.clusterCaring.append(subclusterCaring)
def asDims(self, v, i):
result = []
cares = []
for dim, c in enumerate(range(self.numClusters)):
clusterMean = self.clusterMeans[c][self.clusters[i][c]]
for m in clusterMean:
acare = self.clusterCaring[c][self.clusters[i][c]]
result.append(m + (v[dim] * sqrt(1-acare)))
cares.append(acare)
v = PersonalityVoter(result) #TODO: do personality right
v.cares = cares
return v
def fromDims(self, dimvoters, vType):
for v in dimvoters:
self.append(vType.fromDims(v,self,v.cares))
class KSModel(DimModel): #Kitchen sink
builtElectorate = KSElectorate
baseElectorate = RandomModel()
@autoassign
#dc = dimensional cluster; vc = voter cluster
def __init__(self, dcdecay=(1,1), dccut = .2,
wcdecay=(1,1), wccut = .2,
wcalpha=1, vccaring=(3,1.5)):
pass
def __str__(self):
return "_".join(str(x) for x in (self.__class__.__name__,self.wcalpha) + self.dcdecay + self.wcdecay + self.vccaring)
def __call__(self, nvot, ncand, vType=DimVoter):
"""Tests? Making statistical tests that would pass reliably is
a huge hassle. Sorry, maybe later.
"""
vType.resetClusters()
e = self.builtElectorate()
e.dcs = [] #number of dimensions in each dc
e.dimWeights = [] #raw importance of each dimension, regardless of dc
clusterWeight = 1
while clusterWeight > self.dccut:
dimweight = clusterWeight
dimnum = 0
while dimweight > self.wccut:
e.dimWeights.append(dimweight)
dimnum += 1
dimweight *= beta.rvs(*self.wcdecay)
e.dcs.append(dimnum)
clusterWeight *= beta.rvs(*self.dcdecay)
e.numClusters = len(e.dcs)
e.numSubclusters = [0] * e.numClusters
e.chooseClusters(nvot + ncand, self.wcalpha, lambda:beta.rvs(*self.vccaring))
return self.makeElectorate(e, nvot, ncand, vType)