-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdash6.py
425 lines (365 loc) · 16.8 KB
/
dash6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import dash
from dash import dcc, html
from dash.dependencies import Input, Output, State
import plotly.express as px
import pandas as pd
import numpy as np
import logging
import base64
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
# Define the hierarchical structure
hierarchy = {
'Substation AA': {
'Feeder 11': {
'DT BB': ['Meter 113', 'Meter 121'],
'DT CC': ['Meter 43', 'Meter 97', 'Meter 58', 'Meter 109'],
},
'Feeder 00': {} # Empty for demonstration purposes
}
}
# Initialize the Dash app
app = dash.Dash(__name__)
# Define the button style
button_style = {
'cursor': 'pointer',
'padding': '5px 10px',
'margin': '5px 2px',
'border': '1px solid #ccc',
'borderRadius': '5px',
'backgroundColor': '#f0f0f0',
'boxShadow': '2px 2px 2px rgba(0,0,0,0.1)',
'transition': 'all 0.3s ease',
'fontSize': '16px',
'textAlign': 'center',
'width': 'fit-content',
}
button_style_selected = {
**button_style,
'backgroundColor': '#e6f2ff',
'boxShadow': 'inset 2px 2px 2px rgba(0,0,0,0.1)',
'border': '1px solid #4da6ff',
}
# Read and encode the image
current_dir = os.path.dirname(os.path.abspath(__file__))
image_path = os.path.join(current_dir, 'Assets', 'image (3).png')
with open(image_path, "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
# Layout of the app
app.layout = html.Div(children=[
dcc.Store(id='app-state', data={
'selected_parameter': None,
'selected_time_frame': 'D',
'substation': 'Substation AA',
'feeder': None,
'transformer': None,
'meter': None
}),
# Main container
html.Div(style={'display': 'flex', 'justifyContent': 'space-between', 'alignItems': 'flex-start', 'marginBottom': '20px'}, children=[
# Substation and other dropdowns
html.Div(id='substation-div', style={'width': '25%', 'padding': '10px'}, children=[
html.H1('Electrical Infrastructure', style={'fontSize': '24px', 'textAlign': 'center', 'marginBottom': '20px'}),
html.Label('Substation', style={'fontSize': '18px'}),
dcc.Dropdown(
id='substation-dropdown',
options=[{'label': k, 'value': k} for k in hierarchy.keys()],
value='Substation AA'
),
html.Label('Feeder', style={'fontSize': '18px'}),
dcc.Dropdown(id='feeder-dropdown'),
html.Label('Transformer', style={'fontSize': '18px'}),
dcc.Dropdown(id='transformer-dropdown'),
html.Label('Meter', style={'fontSize': '18px'}),
dcc.Dropdown(id='meter-dropdown'),
html.Label('Account Number', style={'fontSize': '18px'}),
dcc.Dropdown(id='customer-id-dropdown'),
]),
# Electrical infrastructure diagram
# Electrical infrastructure diagram
html.Div(style={'width': '50%', 'textAlign': 'center'}, children=[
html.H2("Electrical Infrastructure Diagram", style={'fontSize': '24px', 'marginBottom': '10px'}),
html.Img(src=f'data:image/png;base64,{encoded_image}', style={
'width': '100%',
'maxWidth': '800px', # Increase this value to make the image larger
'margin': 'auto'
})
]),
# Electrical Parameters and Time Frame
html.Div(style={'width': '25%', 'display': 'flex', 'flexDirection': 'column', 'alignItems': 'flex-end'}, children=[
html.Div(style={'display': 'flex', 'justifyContent': 'space-between', 'width': '100%'}, children=[
# Time Frame
html.Div(children=[
html.H1('Time Frame', style={'fontSize': '24px', 'textAlign': 'center', 'marginBottom': '10px'}),
html.Div(id='time-frame-div', children=[
html.Div(id='daily-div', style=button_style, children=['Daily']),
html.Div(id='weekly-div', style=button_style, children=['Weekly']),
html.Div(id='monthly-div', style=button_style, children=['Monthly']),
]),
]),
# Electrical Parameters
html.Div(children=[
html.H1('Electrical Parameters', style={'fontSize': '24px', 'textAlign': 'center', 'marginBottom': '10px'}),
html.Div(id='parameter-div', children=[
html.Div(id='active-power-div', style=button_style, children=['Active Power (kW)']),
html.Div(id='current-div', style=button_style, children=['Current (A)']),
html.Div(id='voltage-div', style=button_style, children=['Voltage (V)']),
html.Div(id='apparent-power-div', style=button_style, children=['Apparent Power (kVA)']),
html.Div(id='power-factor-div', style=button_style, children=['Power Factor']),
]),
]),
]),
]),
]),
# Graph
dcc.Graph(id='parameter-chart', style={'margin': '20px 10px'}),
# Interaction log
html.Div(id='interaction-log', style={'marginTop': '20px', 'padding': '10px', 'border': '1px solid #ddd'})
])
# Helper function to generate simulated data based on selection
def generate_data(selected_substation, selected_feeder, selected_transformer, selected_meter, time_frame):
end_date = pd.Timestamp.now().floor('H')
if time_frame == 'D':
start_date = end_date - pd.Timedelta(days=1)
time_index = pd.date_range(start=start_date, end=end_date, freq='H')
elif time_frame == 'W':
start_date = end_date - pd.Timedelta(weeks=1)
time_index = pd.date_range(start=start_date, end=end_date, freq='H')
else: # Monthly
start_date = end_date - pd.Timedelta(days=30)
time_index = pd.date_range(start=start_date, end=end_date, freq='H')
# Generate base active power
active_power = np.random.uniform(10, 50, len(time_index))
# Generate more distinct voltage and current data
voltage_base = 230 + np.random.normal(0, 2, len(time_index)) # Base voltage around 230V
current_base = active_power * 1000 / (voltage_base * np.sqrt(3)) # Base current calculation
voltage_r = voltage_base + np.random.normal(0, 1, len(time_index))
voltage_y = voltage_base + np.random.normal(0, 1, len(time_index))
voltage_b = voltage_base + np.random.normal(0, 1, len(time_index))
current_r = current_base * (1 + np.random.normal(0, 0.05, len(time_index)))
current_y = current_base * (1 + np.random.normal(0, 0.05, len(time_index)))
current_b = current_base * (1 + np.random.normal(0, 0.05, len(time_index)))
apparent_power = np.sqrt(3) * voltage_base * current_base / 1000 # in kVA
power_factor = np.random.uniform(0.8, 0.95, len(time_index))
data = {
'Time': time_index,
'Current R': current_r,
'Current Y': current_y,
'Current B': current_b,
'Voltage R': voltage_r,
'Voltage Y': voltage_y,
'Voltage B': voltage_b,
'Apparent Power (kVA)': apparent_power,
'Power Factor': power_factor,
'Active Power (kW)': active_power,
}
df = pd.DataFrame(data)
return df
# Main callback to update the app state
@app.callback(
Output('app-state', 'data'),
Output('interaction-log', 'children'),
[Input('substation-dropdown', 'value'),
Input('feeder-dropdown', 'value'),
Input('transformer-dropdown', 'value'),
Input('meter-dropdown', 'value'),
Input('active-power-div', 'n_clicks'),
Input('current-div', 'n_clicks'),
Input('voltage-div', 'n_clicks'),
Input('apparent-power-div', 'n_clicks'),
Input('power-factor-div', 'n_clicks'),
Input('daily-div', 'n_clicks'),
Input('weekly-div', 'n_clicks'),
Input('monthly-div', 'n_clicks')],
[State('app-state', 'data'),
State('interaction-log', 'children')]
)
def update_state(substation, feeder, transformer, meter,
active_power_clicks, current_clicks, voltage_clicks,
apparent_power_clicks, power_factor_clicks,
daily_clicks, weekly_clicks, monthly_clicks,
current_state, current_log):
ctx = dash.callback_context
if not ctx.triggered:
return current_state, current_log
trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]
new_state = current_state.copy()
log_entry = f"User action: {trigger_id} selected. "
if trigger_id == 'substation-dropdown':
new_state['substation'] = substation
new_state['feeder'] = None
new_state['transformer'] = None
new_state['meter'] = None
log_entry += f"Substation set to {substation}."
elif trigger_id == 'feeder-dropdown':
new_state['feeder'] = feeder
new_state['transformer'] = None
new_state['meter'] = None
log_entry += f"Feeder set to {feeder}."
elif trigger_id == 'transformer-dropdown':
new_state['transformer'] = transformer
new_state['meter'] = None
log_entry += f"Transformer set to {transformer}."
elif trigger_id == 'meter-dropdown':
new_state['meter'] = meter
log_entry += f"Meter set to {meter}."
elif trigger_id in ['active-power-div', 'current-div', 'voltage-div', 'apparent-power-div', 'power-factor-div']:
parameter_mapping = {
'active-power-div': 'Active Power (kW)',
'current-div': 'Current (A)',
'voltage-div': 'Voltage (V)',
'apparent-power-div': 'Apparent Power (kVA)',
'power-factor-div': 'Power Factor'
}
new_state['selected_parameter'] = parameter_mapping[trigger_id]
log_entry += f"Parameter set to {new_state['selected_parameter']}."
elif trigger_id in ['daily-div', 'weekly-div', 'monthly-div']:
new_state['selected_time_frame'] = trigger_id[0].upper()
log_entry += f"Time frame set to {new_state['selected_time_frame']}."
new_log = html.Div([
html.Div(log_entry),
html.Br(),
html.Div(current_log) if current_log else None
])
return new_state, new_log
# Callback to update the chart based on the app state
@app.callback(
Output('parameter-chart', 'figure'),
Input('app-state', 'data')
)
def update_chart(state):
if state['selected_parameter'] is None:
return px.scatter(title="Please select a parameter")
df = generate_data(state['substation'], state['feeder'], state['transformer'], state['meter'], state['selected_time_frame'])
if state['selected_parameter'] == 'Current (A)':
fig = px.line(df, x='Time', y=['Current R', 'Current Y', 'Current B'], title='Current Over Time (A)')
y_axis_title = 'Current (A)'
max_value = df[['Current R', 'Current Y', 'Current B']].max().max()
min_value = df[['Current R', 'Current Y', 'Current B']].min().min()
elif state['selected_parameter'] == 'Voltage (V)':
fig = px.line(df, x='Time', y=['Voltage R', 'Voltage Y', 'Voltage B'], title='Voltage Over Time (V)')
y_axis_title = 'Voltage (V)'
max_value = df[['Voltage R', 'Voltage Y', 'Voltage B']].max().max()
min_value = df[['Voltage R', 'Voltage Y', 'Voltage B']].min().min()
elif state['selected_parameter'] == 'Apparent Power (kVA)':
fig = px.line(df, x='Time', y='Apparent Power (kVA)', title='Apparent Power Over Time (kVA)')
y_axis_title = 'Apparent Power (kVA)'
max_value = df['Apparent Power (kVA)'].max()
min_value = df['Apparent Power (kVA)'].min()
elif state['selected_parameter'] == 'Power Factor':
fig = px.line(df, x='Time', y='Power Factor', title='Power Factor Over Time')
y_axis_title = 'Power Factor'
max_value = df['Power Factor'].max()
min_value = df['Power Factor'].min()
else: # Active Power (kW)
fig = px.line(df, x='Time', y='Active Power (kW)', title='Active Power Over Time (kW)')
y_axis_title = 'Active Power (kW)'
max_value = df['Active Power (kW)'].max()
min_value = df['Active Power (kW)'].min()
# Add max and min lines
fig.add_hline(y=max_value, line_color="red", line_dash="dash", annotation_text=f"Max: {max_value:.2f}", annotation_position="top right")
fig.add_hline(y=min_value, line_color="green", line_dash="dash", annotation_text=f"Min: {min_value:.2f}", annotation_position="bottom right")
# Update layout of the figure
fig.update_layout(
height=700,
width=2500,
margin=dict(l=20, r=20, t=60, b=20),
hovermode='x unified',
xaxis_title='Time',
yaxis_title=y_axis_title,
title={
'text': f"{state['selected_parameter']} Over Time",
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top',
'font': {'size': 24, 'color': '#333', 'family': 'Arial, sans-serif'}
}
)
# Add shading for peak times (assuming 5 PM to 10 PM is peak)
if state['selected_time_frame'] == 'D':
fig.add_vrect(x0="17:00", x1="22:00", fillcolor="LightSalmon", opacity=0.2, line_width=0)
# Add shading for weekdays if weekly or monthly view
if state['selected_time_frame'] in ['W', 'M']:
start_date = df['Time'].min()
end_date = df['Time'].max()
current_date = start_date
while current_date <= end_date:
if current_date.weekday() < 5: # Monday to Friday
fig.add_vrect(x0=current_date, x1=current_date + pd.Timedelta(days=1),
fillcolor="LightGray", opacity=0.2, line_width=0)
current_date += pd.Timedelta(days=1)
fig.add_annotation(x=start_date + (end_date - start_date)/2, y=1, text="Weekdays",
showarrow=False, yref="paper", font=dict(size=14, color="gray"))
# Update x-axis format based on time frame
if state['selected_time_frame'] == 'D':
fig.update_xaxes(dtick=3600000, tickformat='%H:%M', title_text='Time of Day')
elif state['selected_time_frame'] == 'W':
fig.update_xaxes(dtick=86400000, tickformat='%a', title_text='Day of Week')
else: # Monthly
fig.update_xaxes(dtick=86400000, tickformat='%d/%m', title_text='Date')
# Adjust y-axis range to accommodate max and min lines
y_range = max_value - min_value
fig.update_yaxes(range=[min_value - 0.1*y_range, max_value + 0.1*y_range])
return fig
# Callback to update button styles
@app.callback(
[Output(f'{param}-div', 'style') for param in ['active-power', 'current', 'voltage', 'apparent-power', 'power-factor']] +
[Output(f'{time_frame}-div', 'style') for time_frame in ['daily', 'weekly', 'monthly']],
Input('app-state', 'data')
)
def update_styles(state):
parameter_mapping = {
'Active Power (kW)': 'active-power',
'Current (A)': 'current',
'Voltage (V)': 'voltage',
'Apparent Power (kVA)': 'apparent-power',
'Power Factor': 'power-factor'
}
parameter_styles = [
button_style_selected if state['selected_parameter'] == param else button_style
for param in ['Active Power (kW)', 'Current (A)', 'Voltage (V)', 'Apparent Power (kVA)', 'Power Factor']
]
time_frame_styles = [
button_style_selected if state['selected_time_frame'] == tf[0].upper() else button_style
for tf in ['daily', 'weekly', 'monthly']
]
return parameter_styles + time_frame_styles
# Callbacks for updating dropdown options
@app.callback(
Output('feeder-dropdown', 'options'),
[Input('substation-dropdown', 'value')]
)
def update_feeder_dropdown(selected_substation):
return [{'label': k, 'value': k} for k in hierarchy[selected_substation].keys()]
@app.callback(
Output('transformer-dropdown', 'options'),
[Input('feeder-dropdown', 'value'),
Input('substation-dropdown', 'value')]
)
def update_transformer_dropdown(selected_feeder, selected_substation):
if selected_feeder:
return [{'label': k, 'value': k} for k in hierarchy[selected_substation][selected_feeder].keys()]
return []
@app.callback(
Output('meter-dropdown', 'options'),
[Input('transformer-dropdown', 'value'),
Input('feeder-dropdown', 'value'),
Input('substation-dropdown', 'value')]
)
def update_meter_dropdown(selected_transformer, selected_feeder, selected_substation):
if selected_transformer:
return [{'label': meter, 'value': meter} for meter in hierarchy[selected_substation][selected_feeder][selected_transformer]]
return []
@app.callback(
Output('customer-id-dropdown', 'options'),
[Input('meter-dropdown', 'value')]
)
def update_customer_id_dropdown(selected_meter):
if selected_meter:
return [{'label': f'Account for {selected_meter}', 'value': f'AA11BB{selected_meter[-3:]}'},]
return []
# Run the Dash app
if __name__ == '__main__':
app.run_server(debug=True)