Skip to content

Latest commit

 

History

History
58 lines (51 loc) · 1.88 KB

evaluation.md

File metadata and controls

58 lines (51 loc) · 1.88 KB

Detection evaluation

Two scripts are available for evaluating detection predictions (predicts.coco):

1. detection.py

Evaluates single model predictions with detailed metrics:

  • Classes: panel, character, text, face, all, all (filtered)
  • Metrics: AP.50, AP.50-95, AR-10, AR-100
  • Output: Terminal table, CSV, and/or XLSX file
# Setup
conda create -n eval python=3.8
conda activate eval
pip install -e .
pip install openpyxl

# Usage
python comix/evaluators/detection.py \
    -n DATASET_NAME \  # [eBDtheque, DCM, comics, popmanga]
    -s SPLIT \         # [val, test]
    -wn WEIGHTS_NAME \ # Model weights identifier
    --save N \         # Number of visualization images to save
    --xlsx \           # Save to Excel
    --plotting \       # Print results to terminal
    --no_layout        # Output results in CSV format instead of table

2. detection_batch.py

Batch evaluates multiple models across all datasets:

  • Input Structure:
    predicts.coco/
    ├── eBDtheque/
    │   ├── model1/
    │   │   └── val.json
    │   └── model2/
    │       └── val.json
    ├── DCM/
    └── ...
    
  • Features:
    • Automatically discovers all models in prediction folders
    • Evaluates AP50 scores for each class (panel, face, character, text)
    • Generates comparison matrices of models vs datasets
    • Supports both table and CSV output formats
python comix/evaluators/detection_batch.py \
    -gt data/comix.coco \            # Ground truth folder
    -pd data/predicts.coco \         # Predictions folder
    -o out/detection_results.xlsx \  # Output file
    --xlsx \                         # Save to Excel
    --plotting \                     # Print results to terminal
    --no_layout                      # Output results in CSV format instead of table

Both scripts save results in Excel format for further analysis.