-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
855 lines (705 loc) · 45.1 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
import pandas as pd
#import mplhep
import time
import seaborn as sns
import pathlib
import h5py
import matplotlib.pyplot as plt
plt.rcParams['legend.title_fontsize'] = 'xx-small'
import utils as u
import numpy as np
import scipy.stats as stats
from sklearn.metrics import roc_curve, auc
import mplhep as hep
plt.style.use(hep.style.CMS)
import sys
sys.path.append('../')
sys.path.append('../../')
import scripts.qkmedians as qkmed
import utils as u
import plots as p
import scripts.util as ut
import scripts.classic_functions as cf
def plot_latent_representations(data, class_labels, save_dir=None, sample_id=None):
df = pd.DataFrame(data)
df['class_id'] = class_labels
figure = sns.pairplot(df, hue='class_id', diag_kind="hist")
plt.tight_layout()
if save_dir:
pathlib.Path(save_dir).mkdir(parents=True, exist_ok=True)
figure.savefig(save_dir+'/latent_feature_pairs_'+sample_id+'.png')
plt.show()
def plot_centroids(centroids, save_dir, sample_id, clusters=2):
k = centroids.shape[1]
fig, ax = plt.subplots(k, k, sharex='col', sharey='row', figsize=(15,15))
#rows, cols = np.tril_indices(8, m=8)
for i in range(k):
for j in range(k):
if i<j:
ax[i, j].axis('off')
else:
ax[i, j].scatter(centroids[0,i], centroids[0,j], c='red', s=20, marker="X") #cluster 0
ax[i, j].scatter(centroids[1,i], centroids[1,j], c='blue', s=20, marker="D") #cluster 1
#ax[i, j].scatter(centroids[2,i], centroids[2,j], c='green', s=50, marker="o") #cluster 1
#ax[i, j].grid(True, fillstyle='full')
fig.savefig(save_dir+'/centroids_'+sample_id+'.png')
plt.show()
def plot_centroids_compare(centroids_q, centroids_c, fig_dir, sample_id, clusters=2):
k = centroids_q.shape[1]
fig, ax = plt.subplots(k, k, sharex='col', figsize=(20,20))
#set_share_axes(, sharex=True)
#set_share_axes(ax[:,2:], sharex=True)
xs = np.linspace(-1,1,200)
#rows, cols = np.tril_indices(8, m=8)
for i in range(k):
for j in range(k):
if i==j:
sns.kdeplot(centroids_q[:,i], ax=ax[i,j], fill=True, color='green')
sns.kdeplot(centroids_c[:,i], ax=ax[i,j], fill=True, color='maroon')
ax[i, j].grid(True, fillstyle='full')
ax[i, j].set_xlim(-1,1)
ax[i, j].set_yticklabels([])
ax[i, j].set(ylabel=None)
#ax[i, j].set_ylim(-1,1)
else:
ax[i, j].scatter(centroids_q[0,j], centroids_q[0,i], c='limegreen', s=50, marker='X') #cluster 0
ax[i, j].scatter(centroids_q[1,j], centroids_q[1,i], c='green', s=50, marker='X') #cluster 1
ax[i, j].scatter(centroids_q[2,j], centroids_q[2,i], c='forestgreen', s=50, marker='X') #cluster 1
ax[i, j].scatter(centroids_c[0,j], centroids_c[0,i], c='indianred', s=50, marker='D') #cluster 0
ax[i, j].scatter(centroids_c[1,j], centroids_c[1,i], c='maroon', s=50, marker='D') #cluster 1
ax[i, j].scatter(centroids_c[2,j], centroids_c[2,i], c='red', s=50, marker='D') #cluster 1
ax[i, j].set_xlim(-1,1)
ax[i, j].set_ylim(-1,1)
ax[i, j].grid(True, fillstyle='full')
fig.savefig(fig_dir+'/centroids_compare_'+sample_id+'.png')
plt.show()
def plot_clusters(latent_coords, cluster_assignments, labels=['BG', 'SIG'], cluster_centers=None, title_suffix=None, filename_suffix=None, save_dir=None):
"""
Only for artificially generated data --> not used for particles
"""
latent_dim_n = latent_coords.shape[1] - 1 if latent_coords.shape[1] % 2 else latent_coords.shape[1] # if num latent dims is odd, slice off last dim
nrows, ncols = u.calculate_nrows_ncols(latent_dim_n)
fig, axs = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True)
for d, ax in zip(range(0, latent_dim_n, 2), axs.flat if latent_dim_n > 2 else [axs]):
scatter = ax.scatter(latent_coords[:,d], latent_coords[:,d+1], c=cluster_assignments, s=100, marker="o", cmap='Dark2')
ax.set_title(r'$z_{} \quad & \quad z_{}$'.format(d+1, d+2), fontsize='small')
if cluster_centers is not None:
ax.scatter(cluster_centers[:, d], cluster_centers[:, d+1], c='black', s=100, alpha=0.5);
if latent_dim_n > 2 and axs.size > latent_dim_n/2:
for a in axs.flat[int(latent_dim_n/2):]: a.axis('off')
legend1 = ax.legend(*scatter.legend_elements(), loc="best", title="Classes")
ax.add_artist(legend1)
plt.suptitle(' '.join(filter(None, ['data', title_suffix])))
plt.tight_layout()
if save_dir:
fig.savefig(os.path.join(save_dir, '_'.join(filter(None, ['clustering', filename_suffix, '.png']))))
else:
plt.show()
plt.close(fig)
def plot_distance_to_centroids_quantum(data, name_signal='GtWWna35', normalize=False, id_fig=None, save_dir=None):
dist, dist_s, cluster_label, cluster_label_s = data
if normalize:
dist = ut.normalize(dist)
dist_s = ut.normalize(dist_s)
for i in range(0, dist.shape[1]): # second dim = number of clusters
figure = plt.figure()
plt.hist(dist[cluster_label==i,i], histtype = 'step', fill=True, bins=100, label='QCD signal', alpha=0.75, density=True, color='Orange')
plt.hist(dist_s[cluster_label_s==i,i], histtype = 'step', fill=False, bins=100, label=f'{name_signal}', density=True, color='deepskyblue')
#plt.hist(ratio[:,i], bins=100, label='ratio c/q', alpha=0.6, density=True)
plt.yscale('log')
plt.legend()
plt.title(f'Quantum Distance to cluster median {i}')
if save_dir: figure.savefig(f'{save_dir}/quantum_distance_{id_fig}_cluster{i}.png')
plt.show()
def plot_distance_to_centroids_classic(data, name_signal='GtWWna35', normalize=False, id_fig=None, save_dir=None):
dist, dist_s, cluster_label, cluster_label_s = data
if normalize:
dist = ut.normalize(dist)
dist_s = ut.normalize(dist_s)
for i in range(0, dist.shape[1]): # second dim = number of clusters
figure = plt.figure()
plt.hist(dist[cluster_label==i,i], histtype = 'step', fill=True, bins=100, label='QCD signal', alpha=0.75, density=True, color='Orange')
plt.hist(dist_s[cluster_label_s==i,i], histtype = 'step', fill=False, bins=100, label=f'{name_signal}', density=True, color='deepskyblue')
#plt.hist(ratio[:,i], bins=100, label='ratio c/q', alpha=0.6, density=True)
plt.yscale('log')
plt.legend()
plt.title(f'Euclidian Distance to cluster median {i}')
if save_dir: figure.savefig(f'{save_dir}/euclidian_distance_{id_fig}_cluster{i}.png')
plt.show()
def plot_distance_to_centroids_compare(data, name_signal='GtWWna35', test=True, normalize=False, id_fig=None, save_dir=None):
if test: dist_q, dist_qs, cluster_label_q, cluster_label_qs, dist_c, dist_cs, cluster_label_c, cluster_label_cs = data
else: dist_q, cluster_label_q, dist_c, cluster_label_c = data
if normalize:
dist_q = ut.normalize(dist_q)
dist_c = ut.normalize(dist_c)
if test:
dist_qs = ut.normalize(dist_qs)
dist_cs = ut.normalize(dist_cs)
for i in range(0, dist_q.shape[1]): # second dim = number of clusters
plt.figure()
plt.hist(dist_q[cluster_label_q==i,i], histtype = 'step', fill=False, bins=100, label='QCD signal (Q)', density=True, color='darkviolet')
plt.hist(dist_c[cluster_label_c==i,i], histtype = 'step', fill=False, bins=100, label='QCD signal (C)', density=True, color='forestgreen')
if test:
plt.hist(dist_qs[cluster_label_qs==i,i], histtype = 'step', fill=False, bins=100, label=f'{name_signal} (Q)', alpha=0.75, density=True, color='darkviolet')
plt.hist(dist_cs[cluster_label_cs==i,i], histtype = 'step', fill=False, bins=100, label=f'{name_signal} (C)', alpha=0.75, density=True, color='forestgreen')
#plt.hist(ratio[:,i], bins=100, label='ratio c/q', alpha=0.6, density=True)
plt.yscale('log')
plt.legend()
plt.title(f'Quantum vs Euclidian Distance to cluster median {i}')
if save_dir: figure.savefig(f'{save_dir}/QvsC_distance_{id_fig}_cluster{i}.png')
plt.show()
def plot_sum_distance_compare(data, name_signal='GtWWna35', normalize=False, id_fig=None, save_dir=None):
dist_q, dist_qs, dist_c, dist_cs = data
if normalize:
dist_q = ut.normalize(dist_q)
dist_c = ut.normalize(dist_c)
dist_qs = ut.normalize(dist_qs)
dist_cs = ut.normalize(dist_cs)
# sum distances
dist_q = np.sum(dist_q, axis=1)
dist_c = np.sum(dist_c, axis=1)
dist_qs = np.sum(dist_qs, axis=1)
dist_cs = np.sum(dist_cs, axis=1)
fig1 = plt.figure(figsize=(8,6))
plt.hist(dist_c, histtype = 'step', fill=True, linewidth=2, bins=60, label='QCD signal (C)', density=True,alpha=0.55, color='forestgreen',range=(0,8))
plt.hist(dist_cs, histtype = 'step', fill=False, linewidth=2, bins=60, label=f'{name_signal} (C)', density=True, color='darkviolet', range=(0,8))
#plt.hist(ratio[:,i], bins=100, label='ratio c/q', alpha=0.6, density=True)
plt.yscale('log')
plt.legend(prop={'size': 11}, frameon=True)
plt.title(f'Euclidian Sum of Distances to cluster medians')
if save_dir: fig1.savefig(f'{save_dir}/C_sum_distance_{id_fig}.png')
plt.show()
fig2 = plt.figure(figsize=(8,6))
plt.hist(dist_q, histtype = 'step', fill=True, linewidth=2, bins=60, label='QCD signal (Q)', alpha=0.55, density=True, color='forestgreen',range=(0,8))
plt.hist(dist_qs, histtype = 'step', fill=False, linewidth=2, bins=60, label=f'{name_signal} (Q)', density=True, color='darkviolet',range=(0,8))
#plt.hist(ratio[:,i], bins=100, label='ratio c/q', alpha=0.6, density=True)
plt.yscale('log')
plt.legend(prop={'size': 11}, frameon=True)
plt.title(f'Quantum Sum of Distances to cluster medians')
if save_dir: fig2.savefig(f'{save_dir}/Q_sum_distance_{id_fig}.png')
plt.show()
def get_roc_data(qcd, bsm):
true_val = np.concatenate((np.ones(bsm.shape[0]), np.zeros(qcd.shape[0])))
pred_val = np.nan_to_num(np.concatenate((bsm, qcd)))
fpr_loss, tpr_loss, threshold_loss = roc_curve(true_val, pred_val, drop_intermediate=False)
auc_data = auc(fpr_loss, tpr_loss)
return fpr_loss, tpr_loss, auc_data
def get_roc_data_byhand(qcd, bsm):
true_val = np.concatenate((np.ones(bsm.shape[0]), np.zeros(qcd.shape[0])))
pred_val = np.nan_to_num(np.concatenate((bsm, qcd)))
thresholds = u.get_thresholds(true_val, pred_val)
fpr = []; tpr = []
for threshold in thresholds:
y_pred = np.where(pred_val >= threshold, 1, 0)
fp = np.sum((y_pred == 1) & (true_val == 0))
tp = np.sum((y_pred == 1) & (true_val == 1))
fn = np.sum((y_pred == 0) & (true_val == 1))
tn = np.sum((y_pred == 0) & (true_val == 0))
fpr.append(fp / (fp + tn))
tpr.append(tp / (tp + fn))
# Add an extra threshold position
# to make sure that the curve starts at (0, 0)
tpr = np.r_[0, tpr]
fpr = np.r_[0, fpr]
thresholds = np.r_[thresholds[0] + 1, thresholds]
return fpr, tpr, thresholds
def plot_rocs_QKmedians(background, signal, title, save_dir=None):
dist_q, dist_c = background
dist_qs, dist_cs = signal
# quantum data
data_q = get_roc_data(np.sum(dist_q,axis=1), np.sum(dist_qs,axis=1))
# classic data
data_c = get_roc_data(np.sum(dist_c,axis=1), np.sum(dist_cs,axis=1))
fig = plt.figure(figsize=(8,8))
plt.loglog(data_q[1], 1.0/data_q[0], label='%s: (auc = %.2f)'% ('quantum k-medians', data_q[2]*100.), linewidth=1.5, color='darkviolet')
plt.loglog(data_c[1], 1.0/data_c[0], label='%s: (auc = %.2f)'% ('classical k-medians', data_c[2]*100.), linewidth=1.5, color='forestgreen')
#plt.yscale('log', nonpositive='clip')
#plt.xscale('log', nonpositive='clip')
plt.ylabel('1/FPR')
plt.xlabel('TPR')
plt.title(title)
plt.legend(loc='lower right', frameon=True)
plt.grid(True)
#plt.show()
plt.savefig(f'{save_dir}/ROC_Kmedians_QvsC_4000B_3200S_DI.pdf', dpi = fig.dpi, bbox_inches='tight')
def plot_rocs_QKmedians_compare(background, signal, n, colors, ids, title, legend_loc='best', ix=None, save_dir=None):
dist_q=[]; dist_c=[]
dist_qs=[]; dist_cs=[]
for i in range(n):
dq, dc = background[i]
dqs, dcs = signal[i]
dist_q.append(dq)
dist_c.append(dc)
dist_qs.append(dqs)
dist_cs.append(dcs)
fig = plt.figure(figsize=(8,8))
for i in range(n):
# quantum data
data_q = get_roc_data(np.sum(dist_q[i],axis=1), np.sum(dist_qs[i],axis=1))
# classic data
data_c = get_roc_data(np.sum(dist_c[i],axis=1), np.sum(dist_cs[i],axis=1))
xq = data_q[1]; yq = data_q[0]
xc = data_c[1]; yc = data_c[0]
# errors_q = np.sqrt((xq*(1-yq))/len(xq))
# errors_c = np.sqrt((xc*(1-yc))/len(xc))
plt.plot(xq, 1./yq, label='(%s) Quantum: (auc = %.2f)'% (ids[i], data_q[2]*100.), linewidth=1.5, color=colors[i])
#plt.errorbar(xq, 1./yq, yerr=1./(errors_q*yq), label='quantum k-med (%s): (auc = %.2f)'% (latent_dims[i], data_q[2]*100.), linewidth=1.5, color=colors[i], ecolor='red', uplims=True, lolims=True)
plt.plot(xc, 1./yc, label='(%s) Classic: (auc = %.2f)'% (ids[i], data_c[2]*100.), linewidth=1.5, color=colors[i], linestyle='dashed')
#plt.errorbar(xc, 1./yc, yerr=1./(errors_c*yc), label='classical k-med (%s): (auc = %.2f)'% (latent_dims[i], data_c[2]*100.), linewidth=1.5, color=colors[i], linestyle='dashed', ecolor='black', uplims=True, lolims=True)
plt.ylabel('1/FPR')
plt.xlabel('TPR')
plt.yscale('log')
#plt.xscale('log')
#plt.ylim((0, 10**6))
#plt.xscale('log')
#plt.plot(np.linspace(0, 1),np.linspace(0, 1), '--', color='0.75')
#plt.axvline(0.00001, color='red', linestyle='dashed', linewidth=1)
plt.title(title)
leg = plt.legend(title=r'$Lat.Dim.$', fancybox=True, frameon=True, prop={"size":10}, bbox_to_anchor =(1.0, 1.0))
leg.get_title().set_position((-40, 0))
#leg._legend_box.align = "left"
plt.grid(True)
#plt.show()
plt.savefig(f'{save_dir}/ROC_QvsC_Kmedians_1overFPR_TPR_{ix}.pdf', dpi = fig.dpi, bbox_inches='tight')
def parse_tpr_window(string):
string = string.split(',')
s1 = string[0].split('.')
s1 = s1[1]
s2 = string[1].split('.')
s2 = s2[1].split(']')
s2 = s2[0]
return s1, s2
def plot_roc_analysis(input_q, input_c, ids, xlabel, ylabel, plot='auc', title=None, legend_loc='best', save_dir=None, ix=None):
numbers = list(range(len(ids)))
# quantum data and error
data_q = [i[0] for i in input_q]
err_q = [i[1] for i in input_q]
# classical data and error
data_c = [i[0] for i in input_c]
err_c = [i[1] for i in input_c]
fig = plt.figure(figsize=(10,8))
plt.errorbar(numbers, data_q, yerr=err_q, label='Quantum',
linestyle='None', marker='o', capsize=3, color='coral')
plt.errorbar(numbers, data_c, yerr=err_c, label='Classic',
linestyle='None', marker='v', capsize=3, color='forestgreen')
# plt.plot(numbers, auc_q, label='quantum', linewidth=1.5, color=colors[0])
# plt.plot(numbers, auc_c, label='classical', linewidth=1.5, color=colors[1])
plt.xticks(numbers, ids, fontsize=13)
if plot=='auc': plt.ylim(0.7, 1.0)
else: plt.ylim(0.0, 200)
plt.yticks(fontsize=13)
plt.xlabel(xlabel, fontsize=15, loc='center')
plt.ylabel(ylabel, fontsize=15, loc='center')
#plt.yscale('log')
if title:
plt.title(f'TPR window: {title}', fontsize=20)
leg = plt.legend(loc=f'{legend_loc}', fancybox=True, frameon=True, prop={"size":10})
plt.grid(True)
#plt.show()
if title:
l1, l2 = parse_tpr_window(title)
plt.savefig(f'{save_dir}/1overFPR_vs_{xlabel}_{ix}_TPR{l1}{l2}.pdf', dpi = fig.dpi, bbox_inches='tight')
else: plt.savefig(f'{save_dir}/{ylabel}_vs_{xlabel}_{ix}.pdf', dpi = fig.dpi, bbox_inches='tight')
def plot_ROCs_compare(quantum, classic, ids, colors, title, xlabel='TPR', ylabel='1/FPR', legend_loc='best', legend_title='$Minimization$', save_dir=None):
fig = plt.figure(figsize=(8,8))
for i in range(len(ids)): # for each latent space or train size
quantum_loss_qcd, quantum_loss_sig = quantum[i]
classic_loss_qcd, classic_loss_sig = classic[i]
# quantum data
data_q = get_roc_data(quantum_loss_qcd, quantum_loss_sig)
# classic data
data_c = get_roc_data(classic_loss_qcd, classic_loss_sig)
xq = data_q[1]; yq = data_q[0]
xc = data_c[1]; yc = data_c[0]
plt.plot(xq, 1./yq, label='(%s) Q - old: (auc = %.2f)'% (ids[i], data_q[2]*100.), linewidth=1.5, color=colors[i])
plt.plot(xc, 1./yc, label='(%s) Q - new: (auc = %.2f)'% (ids[i], data_c[2]*100.), linewidth=1.5, color=colors[i], linestyle='dashed')
plt.ylabel(ylabel)
plt.xlabel(xlabel)
plt.yscale('log')
#plt.xscale('log')
#plt.xlim((10**(-2), 0))
#plt.ylim(0, 10**2)
#plt.plot(np.linspace(0, 1),np.linspace(0, 1), '--', color='0.75')
#plt.axvline(0.00001, color='red', linestyle='dashed', linewidth=1)
plt.title(title)
leg = plt.legend(fancybox=True, frameon=True, prop={"size":10}, bbox_to_anchor =(1.0, 1.0))
leg.get_title().set_position((-40, 0))
plt.grid(True)
if save_dir:
plt.savefig(f'{save_dir}/ROC_QvsC_Kmedians_latent_compareMedianCalc.pdf', dpi = fig.dpi, bbox_inches='tight')
else:
plt.show()
def plot_correlation_pT_AD_score(read_dir, ids, n_samples_train, signal_name, mass, br_na=None, save_dir=None):
import matplotlib as mpl
label_size = 10
mpl.rcParams['xtick.labelsize'] = label_size
mpl.rcParams['ytick.labelsize'] = label_size
for x, i in enumerate(ids):
with h5py.File(f'{read_dir}/{i}/Latent_{i}_trainsize_{n_samples_train[x]}_{signal_name}{mass}{br_na}_pTcorr.h5', 'r') as file:
q_score_qcd = np.array(file['quantum_loss_qcd'])
q_score_qcd_pT = np.array(file['quantum_loss_qcd_pT'])
q_score_sig = np.array(file['quantum_loss_sig'])
q_score_sig_pT = np.array(file['quantum_loss_sig_pT'])
c_score_qcd = np.array(file['classic_loss_qcd'])
c_score_qcd_pT = np.array(file['classic_loss_qcd_pT'])
c_score_sig = np.array(file['classic_loss_sig'])
c_score_sig_pT = np.array(file['classic_loss_sig_pT'])
fig, axs = plt.subplots(2, 2)
axs[0, 0].hist2d(q_score_qcd, q_score_qcd_pT, density=True, bins=100, range=((0,8),(0, 2500)), norm=mpl.colors.LogNorm())
axs[0, 0].text(5, 2200, 'corr = %.3f ' % u.pearson_coef(q_score_qcd, q_score_qcd_pT), bbox=dict(facecolor='red', alpha=0.5), fontsize=10)
axs[0, 0].set_title('pT vs. quantum score QCD', fontsize=12)
axs[0, 1].hist2d(q_score_sig, q_score_sig_pT, density=True, bins=100, range=((0,8),(0, 2500)), norm=mpl.colors.LogNorm())
axs[0, 1].text(5, 2200, 'corr = %.3f ' % u.pearson_coef(q_score_sig, q_score_sig_pT), bbox=dict(facecolor='red', alpha=0.5), fontsize=10)
if br_na: axs[0, 1].set_title(f'pT vs. quantum score {signal_name}_{mass}_{br_na}', fontsize=12)
else: axs[0, 1].set_title(f'pT vs. quantum score {signal_name}_{mass}', fontsize=12)
axs[1, 0].hist2d(c_score_qcd, c_score_qcd_pT, density=True, bins=100, range=((0,8),(0, 2500)), norm=mpl.colors.LogNorm())
axs[1, 0].text(5, 2200, 'corr = %.3f ' % u.pearson_coef(c_score_qcd, c_score_qcd_pT), bbox=dict(facecolor='red', alpha=0.5), fontsize=10)
axs[1, 0].set_title('pT vs. classic score QCD', fontsize=12)
axs[1, 1].hist2d(c_score_sig, c_score_sig_pT, density=True, bins=100, range=((0,8),(0, 2500)), norm=mpl.colors.LogNorm())
axs[1, 1].text(5, 2200, 'corr = %.3f ' % u.pearson_coef(c_score_sig, c_score_sig_pT), bbox=dict(facecolor='red', alpha=0.5), fontsize=10)
if br_na: axs[1, 1].set_title(f'pT vs. classic score {signal_name}_{mass}_{br_na}', fontsize=12)
else: axs[1, 1].set_title(f'pT vs. classic score {signal_name}_{mass}', fontsize=12)
axs[0,0].set(ylabel='pT jet')
axs[1,1].set(xlabel='AD score')
axs[0,0].xaxis.set_ticks([])
axs[0,1].xaxis.set_ticks([]); axs[0,1].yaxis.set_ticks([])
axs[1,1].yaxis.set_ticks([])
if save_dir: fig.savefig(f'{save_dir}/correlations_pT_AD_score_lat{i}_trainsize{n_samples_train[x]}.pdf')
else: plt.show()
def plot_auc_fpr(quantum, classic, n, ids, xlabel, tpr_window= [0.5, 0.7], title=None, colors=['C11', 'C12'], legend_loc='best', ix=None, save_dir=None):
# auc_q=[]; auc_c=[]
one_over_fpr_q=[]; one_over_fpr_c=[]
for i in range(n):
quantum_loss_qcd, quantum_loss_sig = quantum[i]
classic_loss_qcd, classic_loss_sig = classic[i]
metric_q = u.get_metric(quantum_loss_qcd, quantum_loss_sig, tpr_window=tpr_window)
metric_c = u.get_metric(classic_loss_qcd, classic_loss_sig, tpr_window=tpr_window)
# auc_q.append(metric_q[0])
# auc_c.append(metric_c[0])
one_over_fpr_q.append(metric_q)
one_over_fpr_c.append(metric_c)
# # quantum data
# data_q = get_roc_data(np.sum(dq,axis=1), np.sum(dqs,axis=1))
# # classic data
# data_c = get_roc_data(np.sum(dc,axis=1), np.sum(dcs,axis=1))
# auc_q.append(data_q[2])
# auc_c.append(data_c[2])
# plot_roc_analysis(auc_q, auc_c, ids=ids, xlabel=xlabel, ylabel='AUC', save_dir=save_dir, ix=ix)
plot_roc_analysis(one_over_fpr_q, one_over_fpr_c, ids=ids, xlabel=xlabel, ylabel='1/FPR', plot='1/fpr', title=str(tpr_window), save_dir=save_dir, ix=ix)
def divide_error(numerator, denumerator):
val = numerator[0]/denumerator[0]
val_error = val * np.sqrt((numerator[1]/numerator[0])**2 + (denumerator[1]/denumerator[0])**2)
return (val, val_error)
def plot_ratio_QC_auc_kfold(quantum_loss_qcd, quantum_loss_sig, classic_loss_qcd, classic_loss_sig, ids, n_folds, xlabel='Latent dimensions', title=None, legend_loc='best', save_dir=None):
# auc_data_q = []; auc_data_c = []
# auc_err_q=[]; auc_err_c=[]
ratio = []; ratio_err=[]
for i in range(len(ids)): # for each latent space or train size
auc_q=[]; auc_c=[]
for j in range(n_folds):
# quantum data
_,_,aq = get_roc_data(quantum_loss_qcd[i][j], quantum_loss_sig[i][j])
# classic data
_,_,ac = get_roc_data(classic_loss_qcd[i][j], classic_loss_sig[i][j])
auc_q.append(aq)
auc_c.append(ac)
auc_mean_q = np.mean(auc_q)
auc_std_q = np.std(auc_q)
auc_mean_c = np.mean(auc_c)
auc_std_c = np.std(auc_c)
r, r_err = divide_error((auc_mean_q, auc_std_q), (auc_mean_c, auc_std_c)) # find ratio value and error
ratio.append(r)
ratio_err.append(r_err)
# auc_data_q.append(auc_mean_q)
# auc_err_q.append(auc_std_q)
# auc_data_c.append(auc_mean_c)
# auc_err_c.append(auc_std_c)
numbers = list(range(len(ids)))
fig = plt.figure(figsize=(10,8))
plt.errorbar(numbers, ratio, yerr=ratio_err,
linestyle='None', marker='o', capsize=3, color='coral')
plt.xticks(numbers, ids, fontsize=13)
plt.ylim(0.5, 1.5)
plt.yticks(fontsize=13)
plt.xlabel(xlabel, fontsize=15, loc='center')
plt.ylabel('AUC ratio Q/C', fontsize=15, loc='center')
#plt.yscale('log')
#leg = plt.legend(loc=f'{legend_loc}', fancybox=True, frameon=True, prop={"size":10})
plt.grid(True)
if save_dir:
plt.savefig(f'{save_dir}/ratioAUC_vs_{xlabel}_kfold.pdf', dpi = fig.dpi, bbox_inches='tight')
else: plt.show()
def get_mean_and_error(data):
return [np.mean(data, axis=0), np.std(data, axis=0)]
def get_FPR(tpr_loss, threshold_loss, tpr_window):
position = np.where((tpr_loss>=tpr_window[0]) & (tpr_loss<=tpr_window[1]))[0][0]
threshold_data = threshold_loss[position]
pred_data = [1 if i>= threshold_data else 0 for i in list(pred_val)]
tn, fp, fn, tp = confusion_matrix(true_val, pred_data).ravel()
fpr_data = fp / (fp + tn)
return fpr_data
def get_auc(fpr_list, tpr_list):
from scipy import integrate
sorted_index = np.argsort(fpr_list)
fpr_list_sorted = np.array(fpr_list)[sorted_index]
tpr_list_sorted = np.array(tpr_list)[sorted_index]
return integrate.trapz(y=tpr_list_sorted, x=fpr_list_sorted)
def plot_ROC_kfold(quantum_loss_qcd, quantum_loss_sig, classic_loss_qcd, classic_loss_sig, ids, n_folds, colors, title, pic_id, xlabel='TPR', ylabel='FPR', legend_loc='best', legend_title='$ROC$', save_dir=None):
fig = plt.figure(figsize=(12,10))
for i in range(len(ids)): # for each latent space or train size
fpr_q=[]; fpr_c=[]
auc_q=[]; auc_c=[]
tpr_q=[]; tpr_c=[]
one_over_fpr_q=[]; one_over_fpr_c=[]
for j in range(n_folds):
# quantum data
fq, tq, _ = get_roc_data(quantum_loss_qcd[i][j], quantum_loss_sig[i][j])
# classic data
fc, tc, _ = get_roc_data(classic_loss_qcd[i][j], classic_loss_sig[i][j])
auc_q.append(auc(fq, tq)); auc_c.append(auc(fc, tc))
#one_over_fpr_q.append(1./np.array(fq)); one_over_fpr_c.append(1./np.array(fc))
fpr_q.append(fq); fpr_c.append(fc)
tpr_q.append(tq); tpr_c.append(tc)
auc_data_q = get_mean_and_error(np.array(auc_q))
auc_data_c = get_mean_and_error(np.array(auc_c))
fpr_data_q = get_mean_and_error(np.array(fpr_q))
fpr_data_c = get_mean_and_error(np.array(fpr_c))
#print(np.array(tpr_q).shape)
tpr_mean_q = np.mean(np.array(tpr_q), axis=0)
print(tpr_mean_q.shape)
# if i==1:
# print('TPR mean min value: '+ str(min(tpr_mean_q))+ ', index: '+str(np.argmin(tpr_mean_q)))
# print('FPR mean max value when cuttting on 0.6: '+ str(max(fpr_data_q[0][tpr_mean_q<0.5])))
# print('FPR value for min TPR mean value: '+str(fpr_data_q[0][int(np.argmin(tpr_mean_q))]))
tpr_mean_c = np.mean(np.array(tpr_c), axis=0)
#plt.fill_between(x, y-error, y+error)
one_over_fpr_error = fpr_data_q[1]*(1./np.power(fpr_data_q[0],2))
#one_over_fpr_error = np.std(fpr_data_q[0], axis=0)
plt.plot(tpr_mean_q, 1./fpr_data_q[0], linewidth=1.5, color=colors[i], label='(%s) Quantum: (auc = %.2f+/-%.2f)'% (ids[i], auc_data_q[0]*100., auc_data_q[1]*100.))
plt.fill_between(tpr_mean_q, 1./fpr_data_q[0]-fpr_data_q[1], 1./fpr_data_q[0]+fpr_data_q[1], alpha=0.2, color=colors[i])
# plt.plot(tpr_mean_c, fpr_data_c[0], '--', linewidth=1.5, color=colors[i], label='(%s) Classic: (auc = %.2f+/-%.2f)'% (ids[i], auc_data_c[0]*100., auc_data_c[1]*100.))
# plt.fill_between(tpr_mean_c, fpr_data_c[0]-fpr_data_c[1], fpr_data_c[0]+fpr_data_c[1], alpha=0.2)
plt.ylabel(ylabel)
plt.xlabel(xlabel)
plt.yscale('log')
#plt.xscale('log')
#plt.xlim(0.2, 1.0)
plt.title(title)
leg = plt.legend(fancybox=True, frameon=True, prop={"size":10}, bbox_to_anchor =(1.0, 1.0))
leg.get_title().set_position((-40, 0))
#fig.tight_layout()
plt.grid(True)
if save_dir:
plt.savefig(f'{save_dir}/ROC_final_{pic_id}.pdf', dpi = fig.dpi, bbox_inches='tight')
else: plt.show()
def calculate_ROCs_kfold(runs, n_samples_train, identifiers, n_fold=4, lat_dim=None, qcd_test_size=500, n_samples_signal=500, signal_name='RSGraviton_WW_NA', mass='3.5', br_na=None):
background_total=[]; signal_total=[]
for i in range(len(runs)):
background=[]; signal=[]
for j in range(n_fold):
centroids = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts/centroids/centroids_{runs[i]}_DI_AE_{str(n_samples_train[i])}_correctedcuts_centroids_conv_{j+1}.npy')
save_dir = '/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts'
centroids_c_file = f'{save_dir}/centroids/centroids_{runs[i]}_{str(n_samples_train[i])}_classic_centroids_conv_{j+1}.npy'
loss_c_file=f'{save_dir}/LOSS_{runs[i]}_{str(n_samples_train[i])}_classic_centroids_conv_{j+1}.npy'
data_qcd, data_s, centroids_c, loss_c = u.load_data_and_centroids_c(runs[i], i=j+1, n_samples_train=n_samples_train[i], qcd_test_size=qcd_test_size, n_samples_test=n_samples_signal, signal_name=signal_name, mass=mass, br_na=br_na, centroids_c_dir=centroids_c_file, loss_c_dir=loss_c_file)
#np.save(centroids_c_file, loss_c)
#np.save(loss_c_file, centroids_c)
_, q_distances = qkmed.find_nearest_neighbour_DI(data_qcd, centroids)
_, q_distances_s = qkmed.find_nearest_neighbour_DI(data_s,centroids)
_, c_distances = cf.find_nearest_neighbour_classic(data_qcd,centroids_c)
_, c_distances_s = cf.find_nearest_neighbour_classic(data_s,centroids_c)
background.append([q_distances, c_distances])
signal.append([q_distances_s, c_distances_s])
background_total.append(background)
signal_total.append(signal)
return background_total, signal_total
def calculate_ROCs(runs, n_samples_train, identifiers, lat_dim=None, qcd_test_size=500, n_samples_signal=500, br_na=None, signal_name='RSGraviton_WW_NA', mass='3.5', load_filename=None, around_peak=None):
"""
run_i and lat_dim - identify the latent space dimension
"""
#cluster_labels=[]; centroids=[]; data=[]
background=[]; signal=[]
for i in range(len(runs)):
#cluster_labels = np.load(f'cluster_label_{runs[i]}_Durr_DI_AE_{n_samples_train[i]}.npy')
if load_filename:
print("Centroids loaded")
centroids = np.load(load_filename)
elif lat_dim:
centroids = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/centroids/centroids_{runs[i]}_Durr_DI_AE_{str(n_samples_train[i])}_lat{lat_dim}.npy')
elif 'argmin' in identifiers[i]:
centroids = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/centroids/centroids_{runs[i]}_Durr_DI_AE_{str(n_samples_train[i])}_minClassic.npy')
elif 'Grover' in identifiers[i]:
centroids = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts/centroids/centroids_{runs[i]}_DI_AE_{str(n_samples_train[i])}_correctedcuts_centroids_conv_GROVER.npy')
else:
print("Centroids loaded default!")
centroids = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts/centroids/centroids_{runs[i]}_argmin_DI_AE_{str(n_samples_train[i])}_correctedcuts_centroids_conv.npy')
data_qcd, data_s, centroids_c, loss_c = u.load_data_and_centroids_c(runs[i], n_samples_train=n_samples_train[i], qcd_test_size=qcd_test_size, n_samples_test=n_samples_signal, signal_name=signal_name, mass=mass, br_na=br_na, around_peak=around_peak)
save_dir = '/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts'
np.save(f'{save_dir}/LOSS_{runs[i]}_{str(n_samples_train[i])}_classic_centroids_conv.npy', loss_c)
np.save(f'{save_dir}/centroids/centroids_{runs[i]}_{str(n_samples_train[i])}_classic_centroids_conv.npy', centroids_c)
#plot_centroids_compare(centroids, centroids_c, f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/centroids/trainsizestudy_lat4_try2', f'lat{lat_dim}_ntrain{str(n_samples_train[i])}', clusters=2)
q_cluster_assign, q_distances = qkmed.find_nearest_neighbour_DI(data_qcd, centroids)
q_cluster_assign_s, q_distances_s = qkmed.find_nearest_neighbour_DI(data_s,centroids)
c_cluster_assign, c_distances = cf.find_nearest_neighbour_classic(data_qcd,centroids_c)
c_cluster_assign_s, c_distances_s = cf.find_nearest_neighbour_classic(data_s,centroids_c)
background.append([q_distances, c_distances])
signal.append([q_distances_s, c_distances_s])
#plot_rocs_QKmedians_compare(background, signal, legend_loc='lower left', ix=id_fig, n=len(runs), colors=np.array(['C'+str(j+1)for j in range(len(runs))]), ids=identifiers, title=title, save_dir=save_fig_dir)
#plot_train_size_impact(background, signal, ids=identifiers, title='AUC vs Train Size', n=len(runs), ix=id_fig, save_dir=save_fig_dir)
return background, signal
def AD_scores_q_c(test_qcd, test_sig, centroids_q, centroids_c):
# find cluster assignments + distance to centroids for test data
q_cluster_assign, q_distances = qkmed.find_nearest_neighbour_DI(test_qcd, centroids_q)
#plot_latent_representations(test_qcd, q_cluster_assign)
q_cluster_assign_s, q_distances_s = qkmed.find_nearest_neighbour_DI(test_sig,centroids_q)
#plot_latent_representations(test_sig, q_cluster_assign_s)
c_cluster_assign, c_distances = cf.find_nearest_neighbour_classic(test_qcd,centroids_c)
c_cluster_assign_s, c_distances_s = cf.find_nearest_neighbour_classic(test_sig,centroids_c)
# calc AD scores
q_score_qcd = u.ad_score(q_cluster_assign, q_distances)
q_score_sig = u.ad_score(q_cluster_assign_s, q_distances_s)
c_score_qcd = u.ad_score(c_cluster_assign, c_distances)
c_score_sig = u.ad_score(c_cluster_assign_s, c_distances_s)
# calculate loss from 2 jets
quantum_loss_qcd, index_min_qlqcd = u.combine_loss_min(q_score_qcd)
quantum_loss_sig, index_min_qlsig = u.combine_loss_min(q_score_sig)
quantum = [quantum_loss_qcd, quantum_loss_sig]
classic_loss_qcd, index_min_clqcd = u.combine_loss_min(c_score_qcd)
classic_loss_sig, index_min_clsig = u.combine_loss_min(c_score_sig)
classic = [classic_loss_qcd, classic_loss_sig]
return quantum, classic, [index_min_qlqcd, index_min_qlsig], [index_min_clqcd, index_min_clsig]
def calc_AD_scores(identifiers, n_samples_train, k=2, test_size=10000, signal_name='RSGraviton_WW', mass='35', br_na=None, q_dir='results_qmedians/corrected_cuts/diJet', c_dir='results_kmedians/diJet', read_test_dir='/eos/user/e/epuljak/private/epuljak/public/diJet', classic=True, around_peak=None, pTcorr=False, split=False, n_folds=None):
save_dir='/eos/user/e/epuljak/private/epuljak/public/results_paper_Ema'
quantum=[]; classic=[]
for i in range(len(identifiers)): # for each latent space or train size
start_time = time.time()
# load q-centroids
centroids_q = np.load(f'{q_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}_k{k}_new.npy')
# load c-centroids
centroids_c = np.load(f'{c_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}.npy')
test_qcd, test_sig = u.load_clustering_test_data(identifiers[i], test_size=test_size, k=k, signal_name=signal_name, mass=mass, br_na=br_na, read_dir=read_test_dir, around_peak=around_peak, split=split, n_folds=n_folds)
#test_qcd, test_sig = u.load_clustering_test_data_iML(identifiers[i], test_size=test_size, k=2, signal_name=signal_name, mass=mass, br_na=br_na)
if split:
quantum_loss_qcd=[]; quantum_loss_sig=[]
classic_loss_qcd=[]; classic_loss_sig=[]
for j in range(n_folds):
q,c, _, _ = AD_scores_q_c(test_qcd[j], test_sig[j], centroids_q, centroids_c)
quantum_loss_qcd.append(q[0]); quantum_loss_sig.append(q[1])
classic_loss_qcd.append(c[0]); classic_loss_sig.append(c[1])
quantum_loss_qcd = np.array(quantum_loss_qcd)
quantum_loss_sig = np.array(quantum_loss_sig)
classic_loss_qcd = np.array(classic_loss_qcd)
classic_loss_sig = np.array(classic_loss_sig)
#print(classic_loss_sig.shape)
quantum.append([quantum_loss_qcd, quantum_loss_sig])
classic.append([classic_loss_qcd, classic_loss_sig])
print(f'Save n_folds={n_folds} for id={identifiers[i]} for: time = {(time.time() - start_time)}')
with h5py.File(f'{save_dir}/{identifiers[i]}/Latent_{identifiers[i]}_trainsize_{n_samples_train[i]}_{signal_name}{mass}{br_na}_nfolds{n_folds}.h5', 'w') as file:
file.create_dataset('quantum_loss_qcd', data=quantum_loss_qcd)
file.create_dataset('quantum_loss_sig', data=quantum_loss_sig)
file.create_dataset('classic_loss_qcd', data=classic_loss_qcd)
file.create_dataset('classic_loss_sig', data=classic_loss_sig)
else:
q,c, index_min_q, index_min_c = AD_scores_q_c(test_qcd, test_sig, centroids_q, centroids_c)
quantum.append(q)
classic.append(c)
if pTcorr:
load_pt_dir = f'/eos/user/e/epuljak/private/epuljak/PhD/Autoencoders/inference_ntb/pTs'
# pTs_qcd = np.load(f'{load_pt_dir}/qcd_sig/pT_particles.npy')
# phis_qcd = np.load(f'{load_pt_dir}/qcd_sig/phi_particles.npy')
dj_feat_qcd = np.load(f'{load_pt_dir}/qcd_sig/dijet_features_final.npy')
if br_na:
# pTs_sig = np.load(f'{load_pt_dir}/{signal_name}/{br_na}/{mass}/pT_particles.npy')
# phis_sig = np.load(f'{load_pt_dir}/{signal_name}/{br_na}/{mass}/phi_particles.npy')
dj_feat_sig = np.load(f'{load_pt_dir}/{signal_name}/{br_na}/{mass}/dijet_features_final.npy')
else:
# pTs_sig = np.load(f'{load_pt_dir}/{signal_name}/{mass}/pT_particles.npy')
# phis_sig = np.load(f'{load_pt_dir}/{signal_name}/{mass}/phi_particles.npy')
dj_feat_sig = np.load(f'{load_pt_dir}/{signal_name}/{mass}/dijet_features_final.npy')
# pT_q_qcd_particles, phi_q_qcd_particles= u.find_pT_phi_particles_of_min(pTs_qcd, phis_qcd, index_min_qlqcd)
# pT_q_sig_particles, phi_q_sig_particles= u.find_pT_phi_particles_of_min(pTs_sig, phis_sig, index_min_qlsig)
# pT_c_qcd_particles, phi_c_qcd_particles = u.find_pT_phi_particles_of_min(pTs_qcd, phis_qcd, index_min_clqcd)
# pT_c_sig_particles, phi_c_sig_particles = u.find_pT_phi_particles_of_min(pTs_sig, phis_sig, index_min_clsig)
# pT_q_qcd = u.calc_pT_jet(pT_q_qcd_particles, phi_q_qcd_particles)
# pT_q_sig = u.calc_pT_jet(pT_q_sig_particles, phi_q_sig_particles)
# pT_c_qcd = u.calc_pT_jet(pT_c_qcd_particles, phi_c_qcd_particles)
# pT_c_sig = u.calc_pT_jet(pT_c_sig_particles, phi_c_sig_particles)
print(dj_feat_sig.shape)
pT_q_qcd = u.find_pT_jet_of_min(dj_feat_qcd, index_min_q[0])
pT_q_sig = u.find_pT_jet_of_min(dj_feat_sig, index_min_q[1])
pT_c_qcd = u.find_pT_jet_of_min(dj_feat_qcd, index_min_c[0])
pT_c_sig = u.find_pT_jet_of_min(dj_feat_sig, index_min_c[1])
with h5py.File(f'{save_dir}/{identifiers[i]}/Latent_{identifiers[i]}_trainsize_{n_samples_train[i]}_{signal_name}{mass}{br_na}_pTcorr.h5', 'w') as file:
file.create_dataset('quantum_loss_qcd', data=q[0])
file.create_dataset('quantum_loss_qcd_pT', data=pT_q_qcd)
file.create_dataset('quantum_loss_sig', data=q[1])
file.create_dataset('quantum_loss_sig_pT', data=pT_q_sig)
file.create_dataset('classic_loss_qcd', data=c[0])
file.create_dataset('classic_loss_qcd_pT', data=pT_c_qcd)
file.create_dataset('classic_loss_sig', data=c[1])
file.create_dataset('classic_loss_sig_pT', data=pT_c_sig)
#check pt by plotting
# u.make_data_dist_plots(pT_q_qcd, pT_q_qcd_2, '$p_T$ (Q qcd)', 100, True, 'Jet')
# u.make_data_dist_plots(pT_q_sig, pT_q_sig_2, '$p_T$ (Q sig)', 100, True, 'Jet')
# u.make_data_dist_plots(pT_c_qcd, pT_c_qcd_2, '$p_T$ (C qcd)', 100, True, 'Jet')
# u.make_data_dist_plots(pT_c_sig, pT_c_sig_2, '$p_T$ (C sig)', 100, True, 'Jet')
return quantum, classic
def calc_AD_scores_nclusters(identifiers, n_samples_train, clusters, k=2, test_size=10000, signal_name='RSGraviton_WW', mass='35', br_na=None, q_dir='results_qmedians/corrected_cuts/diJet', c_dir='results_kmedians/diJet', read_test_dir='/eos/user/e/epuljak/private/epuljak/public/diJet', classic=True, around_peak=None):
save_dir='/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/ad_scores/final'
quantum=[]; classic=[]
for i in range(len(clusters)): # for each latent space or train size
if clusters[i]=='2':
centroids_q = np.load(f'{q_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}.npy')
centroids_c = np.load(f'{c_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}.npy')
else:
centroids_q = np.load(f'{q_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}_k{clusters[i]}.npy')
centroids_c = np.load(f'{c_dir}/centroids/final/centroids_lat{identifiers[i]}_{n_samples_train[i]}_k{clusters[i]}.npy')
test_qcd, test_sig = u.load_clustering_test_data(identifiers[i], test_size=test_size, k=k, signal_name=signal_name, mass=mass, br_na=br_na, read_dir=read_test_dir, around_peak=around_peak)
q,c, index_min_q, index_min_c = AD_scores_q_c(test_qcd, test_sig, centroids_q, centroids_c)
quantum.append(q)
classic.append(c)
return quantum, classic
def calculate_ROCs_randomVStrained(runs, n_samples_train, identifiers, lat_dim=None, qcd_test_size=500, n_samples_signal=500, br_na=None, signal_name='RSGraviton_WW_NA', mass='3.5'):
"""
run_i and lat_dim - identify the latent space dimension
"""
#cluster_labels=[]; centroids=[]; data=[]
background_Q=[]; signal_Q=[]
background_C=[]; signal_C=[]
for i in range(len(runs)):
#---- TRAINED CENTROIDS ----
if lat_dim:
centroids_trained_q = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/centroids/centroids_{runs[i]}_Durr_DI_AE_{str(n_samples_train[i])}_lat{lat_dim}.npy')
elif 'argmin' in identifiers[i]:
centroids_trained_q = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/centroids/centroids_{runs[i]}_Durr_DI_AE_{str(n_samples_train[i])}_minClassic.npy')
else:
print("Centroids loaded default!")
centroids_trained_q = np.load(f'/eos/user/e/epuljak/private/epuljak/PhD/TN/QIBO/search_algorithms/notebooks/results_qmedians/corrected_cuts/centroids/centroids_{runs[i]}_argmin_DI_AE_{str(n_samples_train[i])}_correctedcuts_centroids_conv.npy')
data_qcd, data_s, centroids_trained_c, _ = u.load_data_and_centroids_c(runs[i], n_samples_train=n_samples_train[i], qcd_test_size=qcd_test_size, n_samples_test=n_samples_signal, signal_name=signal_name, mass=mass, br_na=br_na)
# ---- RANDOM CENTROIDS ----
# read QCD predicted data (test - SIDE)
read_dir =f'/eos/user/e/epuljak/private/epuljak/PhD/Autoencoders/inference_ntb/results/corrected_cuts/{runs[i]}/'
file_name = 'latentrep_QCD_sig.h5'
with h5py.File(read_dir+file_name, 'r') as file:
data = np.array(file['latent_space'][:])
data_train = data[:n_samples_train[i]]
centroids_random = qkmed.initialize_centroids(data_train, k=2) # Intialize centroids
# trained Q
_, q_distances_T = qkmed.find_nearest_neighbour_DI(data_qcd, centroids_trained_q)
_, q_distances_s_T = qkmed.find_nearest_neighbour_DI(data_s,centroids_trained_q)
# random q
_, q_distances_R = qkmed.find_nearest_neighbour_DI(data_qcd, centroids_random)
_, q_distances_s_R = qkmed.find_nearest_neighbour_DI(data_s,centroids_random)
#trained C
_, c_distances_T = cf.find_nearest_neighbour_classic(data_qcd,centroids_trained_c)
_, c_distances_s_T = cf.find_nearest_neighbour_classic(data_s,centroids_trained_c)
# random C
_, c_distances_R = cf.find_nearest_neighbour_classic(data_qcd,centroids_random)
_, c_distances_s_R = cf.find_nearest_neighbour_classic(data_s,centroids_random)
background_Q.append([q_distances_T, q_distances_R])
signal_Q.append([q_distances_s_T, q_distances_s_R])
background_C.append([c_distances_T, c_distances_R])
signal_C.append([c_distances_s_T, c_distances_s_R])
#plot_rocs_QKmedians_compare(background, signal, legend_loc='lower left', ix=id_fig, n=len(runs), colors=np.array(['C'+str(j+1)for j in range(len(runs))]), ids=identifiers, title=title, save_dir=save_fig_dir)
#plot_train_size_impact(background, signal, ids=identifiers, title='AUC vs Train Size', n=len(runs), ix=id_fig, save_dir=save_fig_dir)
return background_Q, signal_Q, background_C, signal_C