-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsincnet.py
163 lines (131 loc) · 6.08 KB
/
sincnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from keras import backend as K
from keras.engine.topology import Layer
from keras.utils import conv_utils
import numpy as np
import math
debug = False
from keras import initializers
class LayerNorm(Layer):
""" Layer Normalization in the style of https://arxiv.org/abs/1607.06450 """
def __init__(self, scale_initializer='ones', bias_initializer='zeros', **kwargs):
super(LayerNorm, self).__init__(**kwargs)
self.epsilon = 1e-6
self.scale_initializer = initializers.get(scale_initializer)
self.bias_initializer = initializers.get(bias_initializer)
def build(self, input_shape):
self.scale = self.add_weight(shape=(input_shape[-1],),
initializer=self.scale_initializer,
trainable=True,
name='{}_scale'.format(self.name))
self.bias = self.add_weight(shape=(input_shape[-1],),
initializer=self.bias_initializer,
trainable=True,
name='{}_bias'.format(self.name))
self.built = True
def call(self, x, mask=None):
mean = K.mean(x, axis=-1, keepdims=True)
std = K.std(x, axis=-1, keepdims=True)
norm = (x - mean) * (1/(std + self.epsilon))
return norm * self.scale + self.bias
def compute_output_shape(self, input_shape):
return input_shape
def debug_print(*objects):
if debug:
print(*objects)
class SincConv1D(Layer):
def __init__(
self,
N_filt,
Filt_dim,
fs,
**kwargs):
self.N_filt=N_filt
self.Filt_dim=Filt_dim
self.fs=fs
super(SincConv1D, self).__init__(**kwargs)
def build(self, input_shape):
# The filters are trainable parameters.
self.filt_b1 = self.add_weight(
name='filt_b1',
shape=(self.N_filt,),
initializer='uniform',
trainable=True)
self.filt_band = self.add_weight(
name='filt_band',
shape=(self.N_filt,),
initializer='uniform',
trainable=True)
# Mel Initialization of the filterbanks
low_freq_mel = 80
high_freq_mel = (2595 * np.log10(1 + (self.fs / 2) / 700)) # Convert Hz to Mel
mel_points = np.linspace(low_freq_mel, high_freq_mel, self.N_filt) # Equally spaced in Mel scale
f_cos = (700 * (10**(mel_points / 2595) - 1)) # Convert Mel to Hz
b1 = np.roll(f_cos, 1)
b2 = np.roll(f_cos, -1)
b1[0] = 30
b2[-1] = (self.fs / 2) - 100
self.freq_scale=self.fs * 1.0
self.set_weights([b1/self.freq_scale, (b2-b1)/self.freq_scale])
super(SincConv1D, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
debug_print("call")
#filters = K.zeros(shape=(N_filt, Filt_dim))
# Get beginning and end frequencies of the filters.
min_freq = 50.0
min_band = 50.0
filt_beg_freq = K.abs(self.filt_b1) + min_freq / self.freq_scale
filt_end_freq = filt_beg_freq + (K.abs(self.filt_band) + min_band / self.freq_scale)
# Filter window (hamming).
n = np.linspace(0, self.Filt_dim, self.Filt_dim)
window = 0.54 - 0.46 * K.cos(2 * math.pi * n / self.Filt_dim)
window = K.cast(window, "float32")
window = K.variable(window)
debug_print(" window", window)
# TODO what is this?
t_right_linspace = np.linspace(1, (self.Filt_dim - 1) / 2, int((self.Filt_dim -1) / 2))
t_right = K.variable(t_right_linspace / self.fs)
debug_print(" t_right", t_right)
# Compute the filters.
output_list = []
for i in range(self.N_filt):
low_pass1 = 2 * filt_beg_freq[i] * sinc(filt_beg_freq[i] * self.freq_scale, t_right)
low_pass2 = 2 * filt_end_freq[i] * sinc(filt_end_freq[i] * self.freq_scale, t_right)
band_pass= (low_pass2 - low_pass1)
band_pass = band_pass / K.max(band_pass)
output_list.append(band_pass * window)
filters = K.stack(output_list) #(80, 251)
filters = K.transpose(filters) #(251, 80)
filters = K.reshape(filters, (self.Filt_dim, 1,self.N_filt)) #(251,1,80) in TF: (filter_width, in_channels, out_channels) in PyTorch (out_channels, in_channels, filter_width)
'''
Given an input tensor of shape [batch, in_width, in_channels] if data_format is "NWC",
or [batch, in_channels, in_width] if data_format is "NCW", and a filter / kernel tensor of shape [filter_width, in_channels, out_channels],
this op reshapes the arguments to pass them to conv2d to perform the equivalent convolution operation.
Internally, this op reshapes the input tensors and invokes tf.nn.conv2d. For example, if data_format does not start with "NC",
a tensor of shape [batch, in_width, in_channels] is reshaped to [batch, 1, in_width, in_channels], and the filter is reshaped to
[1, filter_width, in_channels, out_channels]. The result is then reshaped back to [batch, out_width, out_channels]
(where out_width is a function of the stride and padding as in conv2d) and returned to the caller.
'''
# Do the convolution.
debug_print("call")
debug_print(" x", x)
debug_print(" filters", filters)
out = K.conv1d(
x,
kernel=filters
)
debug_print(" out", out)
return out
def compute_output_shape(self, input_shape):
new_size = conv_utils.conv_output_length(
input_shape[1],
self.Filt_dim,
padding="valid",
stride=1,
dilation=1)
return (input_shape[0],) + (new_size,) + (self.N_filt,)
def sinc(band, t_right):
y_right = K.sin(2 * math.pi * band * t_right) / (2 * math.pi * band * t_right)
#y_left = flip(y_right, 0) TODO remove if useless
y_left = K.reverse(y_right, 0)
y = K.concatenate([y_left, K.variable(K.ones(1)), y_right])
return y