-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
104 lines (82 loc) · 3.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from builtins import print
import numpy as np
import pandas as pd
import matplotlib
import random
matplotlib.use('agg')
import matplotlib.pyplot as plt
matplotlib.rcParams['font.family'] = 'sans-serif'
matplotlib.rcParams['font.sans-serif'] = 'Arial'
import os
import operator
import utils
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
def save_logs(output_directory, hist, y_pred, y_true, duration,
lr=True, plot_test_acc=True):
hist_df = pd.DataFrame(hist.history)
hist_df.to_csv(output_directory + 'history.csv', index=False)
df_metrics = calculate_metrics(y_true, y_pred, duration)
df_metrics.to_csv(output_directory + 'df_metrics.csv', index=False)
index_best_model = hist_df['loss'].idxmin()
row_best_model = hist_df.loc[index_best_model]
df_best_model = pd.DataFrame(data=np.zeros((1, 6), dtype=np.float), index=[0],
columns=['best_model_train_loss', 'best_model_val_loss', 'best_model_train_acc',
'best_model_val_acc', 'best_model_learning_rate', 'best_model_nb_epoch'])
df_best_model['best_model_train_loss'] = row_best_model['loss']
if plot_test_acc:
df_best_model['best_model_val_loss'] = row_best_model['val_loss']
df_best_model['best_model_train_acc'] = row_best_model['acc']
if plot_test_acc:
df_best_model['best_model_val_acc'] = row_best_model['val_acc']
if lr == True:
df_best_model['best_model_learning_rate'] = row_best_model['lr']
df_best_model['best_model_nb_epoch'] = index_best_model
df_best_model.to_csv(output_directory + 'df_best_model.csv', index=False)
if plot_test_acc:
# plot losses
plot_epochs_metric(hist, output_directory + 'epochs_loss.png')
return df_metrics
def calculate_metrics(y_true, y_pred, duration):
res = pd.DataFrame(data=np.zeros((1, 4), dtype=np.float), index=[0],
columns=['precision', 'accuracy', 'recall', 'duration'])
res['precision'] = precision_score(y_true, y_pred, average='macro')
res['accuracy'] = accuracy_score(y_true, y_pred)
res['recall'] = recall_score(y_true, y_pred, average='macro')
res['duration'] = duration
return res
def save_test_duration(file_name, test_duration):
res = pd.DataFrame(data=np.zeros((1, 1), dtype=np.float), index=[0],
columns=['test_duration'])
res['test_duration'] = test_duration
res.to_csv(file_name, index=False)
def plot_epochs_metric(hist, file_name, metric='loss'):
plt.figure()
plt.plot(hist.history[metric])
plt.plot(hist.history['val_' + metric])
plt.title('model ' + metric)
plt.ylabel(metric, fontsize='large')
plt.xlabel('epoch', fontsize='large')
plt.legend(['train', 'val'], loc='upper left')
plt.savefig(file_name, bbox_inches='tight')
plt.close()
archive_name = ARCHIVE_NAMES[0]
dataset_name = 'InlineSkate'
datasets_dict = read_dataset(root_dir, archive_name, dataset_name)
lengths = [2 ** i for i in range(5, 12)]
x_train = datasets_dict[dataset_name][0]
y_train = datasets_dict[dataset_name][1]
x_test = datasets_dict[dataset_name][2]
y_test = datasets_dict[dataset_name][3]
new_archive_name = 'InlineSkateXPs'
for l in lengths:
new_x_train = resample_dataset(x_train, l)
new_x_test = resample_dataset(x_test, l)
new_dataset_name = dataset_name + '-' + str(l)
new_dataset_dir = root_dir + 'archives/' + new_archive_name + '/' + new_dataset_name + '/'
create_directory(new_dataset_dir)
np.save(new_dataset_dir + 'x_train.npy', new_x_train)
np.save(new_dataset_dir + 'y_train.npy', y_train)
np.save(new_dataset_dir + 'x_test.npy', new_x_test)
np.save(new_dataset_dir + 'y_test.npy', y_test)