-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathindex.html
381 lines (373 loc) · 19.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
<html>
<head>
<title>An Attempt at Demystifying Bayesian Deep Learning</title>
<!-- Head.JS -->
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.2/js/bootstrap.min.js" integrity="sha384-alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ" crossorigin="anonymous"></script>
<script type="text/javascript" src="lib/js/head.min.js"></script>
<link rel="stylesheet" href="lib/css/atom-one-light.css">
<link rel="stylesheet" href="css/reveal.css">
<link rel="stylesheet" href="css/theme/simple.css">
<link rel="stylesheet" href="css/reveal-overrides.css">
</head>
<body>
<div class="reveal">
<div class="slides">
<section id="Introduction Slide">
<h2>An Attempt At Demystifying Bayesian Deep Learning</h2>
<p>Eric J. Ma</p>
<p><i class="fa fa-twitter" aria-hidden="true"></i><i class="fa fa-github"></i> ericmjl</p>
<p><i>PyData NYC 2017</i></p>
</section>
<section id="follow-along!">
<h2>Follow along!</h2>
<section>
<h3>On your phone</h3>
<img src="images/qrcode.svg" alt="" width=30%>
</section>
<section>
<h3>On your laptop</h3>
<a href="https://ericmjl.github.io/bayesian-deep-learning-demystified">https://ericmjl.github.io/bayesian-deep-learning-demystified</a>
</section>
</section>
<section id="Outline and Take-Home Points" data-transition="zoom">
<section>
<blockquote align="center" class="twitter-tweet" data-lang="en">
<p lang="en" dir="ltr">The Hype of Deep Learning:
<br>1. Write a post with ML, AI or GAN in the title.
<br>2. post appears at the top of hackernews (despite your best efforts)
<br>3. HN drives tens of thousands of clicks
<br>4. "what's with all the maths? show me pretty pics"
<br>5. <=1% stay for longer than a minute
</p>— Ferenc Huszár (@fhuszar)
<a href="https://twitter.com/fhuszar/status/933682386713350145?ref_src=twsrc%5Etfw">November 23, 2017</a>
</blockquote>
<p class="fragment"><b>I am out to solve Point 4.</b></p>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
</script>
</section>
<section>
<h3>The Obligatory Neon Bayes Rule Sign</h3>
<img src="images/bayes-rule.jpg" alt="">
</section>
<section>
<h2>My (Modest) Goals</h2>
<p>
<ul>
<li class="fragment">Demystify Deep Learning</li>
<li class="fragment">Demystify Bayesian Deep Learning</li>
</ul>
</p>
<p class="fragment">Basically, <i>explain the intuition clearly with minimal jargon</i>.</p>
</section>
<section data-transition="fade">
<h2>Take-Home Point 1</h2>
<p>
Deep Learning is nothing more than <b>compositions of functions on matrices</b>.
</p>
<img src="images/deepnet_regressor-matrices.png" alt="" width=40%>
</section>
<section data-transition="fade">
<h2>Take-Home Point 2</h2>
<p>Bayesian deep learning is grounded on <b>learning a probability distribution for each parameter</b>.</p>
<img src="images/deepnet_regressor-matrices-bayesian.png" alt="" width=40%>
</section>
</section>
<section id="Assumptions">
<h2>Outline</h2>
<p>
<ol>
<li class="fragment">Linear Regression 3 Ways</li>
<li class="fragment">Logistic Regression 3 Ways</li>
<li class="fragment">Deep Nets 3 Ways</li>
<li class="fragment">Going Bayesian</li>
<li class="fragment">Example Neural Network with PyMC3</li>
</ol>
</p>
</section>
<section id="Linear Regression" data-transition="zoom">
<section id="linreg-title">
<h2>Linear Regression</h2>
</section>
<section id="linreg-equation-form">
<h3>Function</h3>
<img src="images/linreg.tex.png" alt="" width=60%>
</section>
<section id="linreg-matrix-diagram">
<h3>Matrices</h3>
<img src="images/linreg-matrices.png" alt="" width=80%>
</section>
<section id="linreg-neural diagram">
<h3>Neural Diagram</h3>
<img src="images/linreg-neural.png" alt="" width=60%>
</section>
<section id="linreg-side-by-side">
<h3>LinReg 3 Ways</h3>
<img src="images/linreg-all.png" alt="" width=90%>
</section>
</section>
<section id="Logistic Regression" data-transition="zoom">
<section>
<h2>Logistic Regression</h2>
</section>
<section id="logreg-equation-form">
<h3>Function</h3>
<img src="images/logreg.tex.png" alt="" width=40%>
</section>
<section id="logreg-matrix-diagram">
<h3>Matrices</h3>
<img src="images/logreg-matrices.png" alt="" width=70%>
</section>
<section id="logreg-neural-diagram">
<h3>Neural Diagram</h3>
<img src="images/logreg-neural.png" alt="" width=70%>
</section>
<section id="logreg-side-by-side">
<h3>LogReg 3 Ways</h3>
<img src="images/logreg-all.png" alt="" width=90%>
</section>
</section>
<section id="Deep Neural Networks" data-transition="zoom">
<section>
<h2>Deep Neural Networks</h2>
</section>
<section id="dnn-equation-form">
<h3>Function</h3>
<img src="images/deepnet_regressor.tex.png" alt="" width=50%>
</section>
<section id="dnn-matrix-diagram">
<h3>Matrices</h3>
<img src="images/deepnet_regressor-matrices.png" alt="" width=50%>
</section>
<section id="dnn-neural-diagram">
<h3>Neural Diagram</h3>
<img src="images/deepnet_regressor-neural.png" alt="" width=90%>
</section>
<section id="dnn-side-by-side">
<h3>DeepNets 3 Ways</h3>
<img src="images/deepnet_regressor-all.png" alt="" width=90%>
</section>
</section>
<section>
<section>
<h2>Going Bayesian</h2>
</section>
<section>
<p>Key Idea: Learn probability density over parameter space.</p>
</section>
</section>
<section id="Bayesian Linear Regression" data-transition="slide">
<section id="bayesian linreg title" data-transition="fade">
<h2>Bayesian Linear Regression</h2>
</section>
<section id="intuition">
<h3>Intuition</h3>
<table>
<tr>
<td align="center" class="fragment"><img src="images/linreg-non-bayesian.png" alt="" width=60%></td>
<td align="center" class="fragment"><img src="images/linreg-bayesian.png" alt="" width=60%></td>
</tr>
</table>
</section>
<section data-transition="fade">
<h3>From this...</h3>
<img src="images/linreg-matrices.png" alt="" width=80%>
</section>
<section data-transition="fade">
<h3>..to this</h3>
<img src="images/linreg-matrices-bayesian.png" alt="" width=80%s>
</section>
</section>
<section id="Bayesian Logistic Regression" data-transition="slide">
<section>
<h2>Bayesian Logistic Regression</h2>
</section>
<section data-transition="fade">
<h3>From this...</h3>
<img src="images/logreg-matrices.png" alt="" width=70%>
</section>
<section data-transition="fade">
<h3>...to this</h3>
<img src="images/logreg-matrices-bayesian.png" alt="" width=70%>
</section>
</section>
<section id="Bayesian DeepNet Regressor" data-transition="slide">
<section>
<h2>Bayesian Deep Nets</h2>
</section>
<section data-transition="fade">
<h3>From this...</h3>
<img src="images/deepnet_regressor-matrices.png" alt="" width="60%">
</section>
<section data-transition="fade">
<h3>...to this</h3>
<img src="images/deepnet_regressor-matrices-bayesian.png" alt="" width="60%">
</section>
</section>
<section id="Ever-Expanding Cheat Sheet" data-transition="zoom">
<h2>Cheat Sheet</h2>
<img src="images/infographic.png" alt="" width=90%>
</section>
<section id="pymc3-intro">
<section>
<img src="images/pymc3.svg" alt="" width=30%>
<p>Probabilistic Programming in Python. Provides:</p>
<ul>
<li class="fragment">statistical distributions</li>
<li class="fragment">sampling algorithms</li>
<li class="fragment">syntax</li>
</ul>
</section>
</section>
<section id="Bayesian Deep Net Multiclass Classification">
<h2>Predict Forest Cover Type</h2>
<section id="examples-problem-overview">
<h3>Problem Overview</h3>
<p>
<ul>
<li class="fragment">UCI ML Repository: <a href="https://archive.ics.uci.edu/ml/datasets/covertype">Covertype Dataset</a></li>
<li class="fragment"><b>Input</b>: 66 cartographic variables</li>
<li class="fragment"><b>Output</b>: one of 7 forest cover types</li>
</ul>
</p>
</section>
<section id="examples-intro">
<h3>Network Architecture</h3>
<img src="images/forest-cover.png" alt="" width=60%>
</section>
<section id="examples-code">
<pre>
<code data-trim data-noescape class="py">
import theano.tensor as tt # pymc devs are discussing new backends
import pymc3 as pm
n_hidden = 20
with pm.Model() as nn_model:
# Input -> Layer 1
weights_1 = pm.Normal('w_1', mu=0, sd=1,
shape=(ann_input.shape[1], n_hidden),
testval=init_1)
acts_1 = pm.Deterministic('activations_1',
tt.tanh(tt.dot(ann_input, weights_1)))
# Layer 1 -> Layer 2
weights_2 = pm.Normal('w_2', mu=0, sd=1,
shape=(n_hidden, n_hidden),
testval=init_2)
acts_2 = pm.Deterministic('activations_2',
tt.tanh(tt.dot(acts_1, weights_2)))
# Layer 2 -> Output Layer
weights_out = pm.Normal('w_out', mu=0, sd=1,
shape=(n_hidden, ann_output.shape[1]),
testval=init_out)
acts_out = pm.Deterministic('activations_out',
tt.nnet.softmax(tt.dot(acts_2, weights_out))) # noqa
# Define likelihood
out = pm.Multinomial('likelihood', n=1, p=acts_out,
observed=ann_output)
with nn_model:
s = theano.shared(pm.floatX(1.1))
inference = pm.ADVI(cost_part_grad_scale=s) # approximate inference done using ADVI
approx = pm.fit(100000, method=inference)
trace = approx.sample(5000)
</code>
</pre>
</section>
<section id="layer-1-weights" data-transition="fade">
<h3>1st Layer Weights</h3>
<img src="images/layer1-weights.png" alt="" width=100%>
</section>
<section id="layer-2-weights" data-transition="fade">
<h3>2nd Layer Weights</h3>
<img src="images/layer2-weights.png" alt="" width=100%>
</section>
<section id="output-weights" data-transition="fade">
<h3>Output Weights</h3>
<img src="images/layer3-weights.png" alt="" width=100%>
</section>
<section id="class-predictions" data-transition="fade">
<h3>Class Predictions</h3>
<img src="images/class_predictions.png" alt="" width=50%>
<p><i>"point estimate"</i></p>
</section>
<section id="class-probabilities" data-transition="fade">
<h3>Class Probabilities</h3>
<img src="images/class_probabilities.png" alt="" width=50%>
<p><i>"probabilistic estimate"</i></p>
</section>
<section id="class-uncertainties" data-transition="fade">
<h3>Class Uncertainties</h3>
<img src="images/class_uncertainties.png" alt="" width=50%>
<p><i>"with uncertainties!"</i></p>
</section>
</section>
<section id="recap">
<section id="recap-1" data-transition="fade">
<h2>Take-Home Point 1</h2>
<p>
Deep Learning is nothing more than <b>compositions of functions on matrices</b>.
</p>
<img src="images/deepnet_regressor-matrices.png" alt="" width=40%>
</section>
<section id="recap-2" data-transition="fade">
<h2>Take-Home Point 2</h2>
<p>Bayesian deep learning is grounded on <b>learning a probability distribution for each parameter</b>.</p>
<img src="images/deepnet_regressor-matrices-bayesian.png" alt="" width=40%>
</section>
</section>
<section id="resources-all">
<section id="resources">
<h2>Resources</h2>
<ul>
<li><a href="http://docs.pymc.io/index.html">PyMC3 docs</a></li>
<li><a href="https://github.com/ericmjl/bayesian-analysis-recipes">Bayesian Analysis Recipes</a></li>
</ul>
</section>
<section id="teachers">
<h2>Teachers</h2>
<p>
<ul>
<li>David Duvenaud</li>
<li>Michelle Fullwood</li>
<li>Thomas Wiecki</li>
</ul>
</p>
</section>
<section id="people-to-read">
<h2>People to Follow</h2>
<p>
<ul>
<li>David MacKay</li>
<li>Yarin Gal</li>
</ul>
</p>
</section>
</section>
<section id="Thanks!">
<h1>Thank you!</h1>
</section>
</div>
<div class="footer">
<p>Source: <i class="fa fa-github" aria-hidden="true"></i> ericmjl/bayesian-deep-learning-demystified</p>
</div>
</div>
<script type="text/javascript" src="js/reveal.js"></script>
<script>
Reveal.initialize({
width: "100%",
height: "100%",
margin: 0,
minScale: 1,
maxScale: 1,
// Push each slide change to the browser history
history: true,
// Display the page number of the current slide
slideNumber: true,
dependencies: [
// Syntax highlight for <code> elements
{ src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },
// MathJax
{ src: 'plugin/math/math.js', async: true }
]
});
</script>
<script src="https://use.fontawesome.com/8f66f558d2.js"></script>
</body>
</html>