-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathexe_pm25.py
70 lines (59 loc) · 1.99 KB
/
exe_pm25.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import torch
import datetime
import json
import yaml
import os
from dataset_pm25 import get_dataloader
from main_model import CSDI_PM25
from utils import train, evaluate
parser = argparse.ArgumentParser(description="CSDI")
parser.add_argument("--config", type=str, default="base.yaml")
parser.add_argument('--device', default='cuda:0', help='Device for Attack')
parser.add_argument("--modelfolder", type=str, default="")
parser.add_argument(
"--targetstrategy", type=str, default="mix", choices=["mix", "random", "historical"]
)
parser.add_argument(
"--validationindex", type=int, default=0, help="index of month used for validation (value:[0-7])"
)
parser.add_argument("--nsample", type=int, default=100)
parser.add_argument("--unconditional", action="store_true")
args = parser.parse_args()
print(args)
path = "config/" + args.config
with open(path, "r") as f:
config = yaml.safe_load(f)
config["model"]["is_unconditional"] = args.unconditional
config["model"]["target_strategy"] = args.targetstrategy
print(json.dumps(config, indent=4))
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
foldername = (
"./save/pm25_validationindex" + str(args.validationindex) + "_" + current_time + "/"
)
print('model folder:', foldername)
os.makedirs(foldername, exist_ok=True)
with open(foldername + "config.json", "w") as f:
json.dump(config, f, indent=4)
train_loader, valid_loader, test_loader, scaler, mean_scaler = get_dataloader(
config["train"]["batch_size"], device=args.device, validindex=args.validationindex
)
model = CSDI_PM25(config, args.device).to(args.device)
if args.modelfolder == "":
train(
model,
config["train"],
train_loader,
valid_loader=valid_loader,
foldername=foldername,
)
else:
model.load_state_dict(torch.load("./save/" + args.modelfolder + "/model.pth"))
evaluate(
model,
test_loader,
nsample=args.nsample,
scaler=scaler,
mean_scaler=mean_scaler,
foldername=foldername,
)