-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBernBeta.R
110 lines (107 loc) · 4.72 KB
/
BernBeta.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
BernBeta = function( priorShape , dataVec , credMass=0.95 , saveGraph=F ) {
# Bayesian updating for Bernoulli likelihood and beta prior.
# Input arguments:
# priorShape
# vector of parameter values for the prior beta distribution.
# dataVec
# vector of 1's and 0's.
# credMass
# the probability mass of the HDI.
# Output:
# postShape
# vector of parameter values for the posterior beta distribution.
# Graphics:
# Creates a three-panel graph of prior, likelihood, and posterior
# with highest posterior density interval.
# Example of use:
# > postShape = BernBeta( priorShape=c(1,1) , dataVec=c(1,0,0,1,1) )
# You will need to "source" this function before using it, so R knows
# that the function exists and how it is defined.
# Check for errors in input arguments:
if ( length(priorShape) != 2 ) {
stop("priorShape must have two components.") }
if ( any( priorShape <= 0 ) ) {
stop("priorShape components must be positive.") }
if ( any( dataVec != 1 & dataVec != 0 ) ) {
stop("dataVec must be a vector of 1s and 0s.") }
if ( credMass <= 0 | credMass >= 1.0 ) {
stop("credMass must be between 0 and 1.") }
# Rename the prior shape parameters, for convenience:
a = priorShape[1]
b = priorShape[2]
# Create summary values of the data:
z = sum( dataVec == 1 ) # number of 1's in dataVec
N = length( dataVec ) # number of flips in dataVec
# Compute the posterior shape parameters:
postShape = c( a+z , b+N-z )
# Compute the evidence, p(D):
pData = beta( z+a , N-z+b ) / beta( a , b )
# Determine the limits of the highest density interval.
# This uses a home-grown function called HDIofICDF.
source( "HDIofICDF.R" )
hpdLim = HDIofICDF( qbeta , shape1=postShape[1] , shape2=postShape[2] , credMass=credMass )
# Now plot everything:
# Construct grid of theta values, used for graphing.
binwidth = 0.005 # Arbitrary small value for comb on Theta.
Theta = seq( from = binwidth/2 , to = 1-(binwidth/2) , by = binwidth )
# Compute the prior at each value of theta.
pTheta = dbeta( Theta , a , b )
# Compute the likelihood of the data at each value of theta.
pDataGivenTheta = Theta^z * (1-Theta)^(N-z)
# Compute the posterior at each value of theta.
pThetaGivenData = dbeta( Theta , a+z , b+N-z )
# Open a window with three panels.
windows(7,10)
layout( matrix( c( 1,2,3 ) ,nrow=3 ,ncol=1 ,byrow=FALSE ) ) # 3x1 panels
par( mar=c(3,3,1,0) , mgp=c(2,1,0) , mai=c(0.5,0.5,0.3,0.1) ) # margin specs
maxY = max( c(pTheta,pThetaGivenData) ) # max y for plotting
# Plot the prior.
plot( Theta , pTheta , type="l" , lwd=3 ,
xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,
xlab=bquote(theta) , ylab=bquote(p(theta)) , cex.lab=1.5 ,
main="Prior" , cex.main=1.5 )
if ( a > b ) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text( textx , 1.0*max(pThetaGivenData) ,
bquote( "beta(" * theta * "|" * .(a) * "," * .(b) * ")" ) ,
cex=2.0 ,adj=textadj )
# Plot the likelihood: p(data|theta)
plot( Theta , pDataGivenTheta , type="l" , lwd=3 ,
xlim=c(0,1) , cex.axis=1.2 , xlab=bquote(theta) ,
ylim=c(0,1.1*max(pDataGivenTheta)) ,
ylab=bquote( "p(D|" * theta * ")" ) ,
cex.lab=1.5 , main="Likelihood" , cex.main=1.5 )
if ( z > .5*N ) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text( textx , 1.0*max(pDataGivenTheta) , cex=2.0 ,
bquote( "Data: z=" * .(z) * ",N=" * .(N) ) ,adj=textadj )
# Plot the posterior.
plot( Theta , pThetaGivenData ,type="l" , lwd=3 ,
xlim=c(0,1) , ylim=c(0,maxY) , cex.axis=1.2 ,
xlab=bquote(theta) , ylab=bquote( "p(" * theta * "|D)" ) ,
cex.lab=1.5 , main="Posterior" , cex.main=1.5 )
if ( a+z > b+N-z ) { textx = 0 ; textadj = c(0,1) }
else { textx = 1 ; textadj = c(1,1) }
text( textx , 1.00*max(pThetaGivenData) , cex=2.0 ,
bquote( "beta(" * theta * "|" * .(a+z) * "," * .(b+N-z) * ")" ) ,
adj=textadj )
text( textx , 0.75*max(pThetaGivenData) , cex=2.0 ,
bquote( "p(D)=" * .(signif(pData,3)) ) , adj=textadj )
# Mark the HDI in the posterior.
hpdHt = mean( c( dbeta(hpdLim[1],a+z,b+N-z) , dbeta(hpdLim[2],a+z,b+N-z) ) )
lines( c(hpdLim[1],hpdLim[1]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5 )
lines( c(hpdLim[2],hpdLim[2]) , c(-0.5,hpdHt) , type="l" , lty=2 , lwd=1.5 )
lines( hpdLim , c(hpdHt,hpdHt) , type="l" , lwd=2 )
text( mean(hpdLim) , hpdHt , bquote( .(100*credMass) * "% HDI" ) ,
adj=c(0.5,-1.0) , cex=2.0 )
text( hpdLim[1] , hpdHt , bquote(.(round(hpdLim[1],3))) ,
adj=c(1.1,-0.1) , cex=1.2 )
text( hpdLim[2] , hpdHt , bquote(.(round(hpdLim[2],3))) ,
adj=c(-0.1,-0.1) , cex=1.2 )
# Construct file name for saved graph, and save the graph.
if ( saveGraph ) {
filename = paste( "BernBeta_",a,"_",b,"_",z,"_",N,".eps" ,sep="")
dev.copy2eps( file = filename )
}
return( postShape )
} # end of function