-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_model_misfit.py
executable file
·372 lines (304 loc) · 11.4 KB
/
plot_model_misfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python3
import argparse
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import matplotlib.ticker as pltticker
import numpy as np
import os
from cmcrameri import cm
from glob import glob
from matplotlib.ticker import EngFormatter
from scipy.interpolate import LinearNDInterpolator
def cart2geo(x, z):
deg2m = 111. * 1000.
# array centroid
lon0 = -118.57100841379312
lat0 = 35.72925262068965
lon = (x / deg2m) + lon0
lat = (z / deg2m) + lat0
return lon,lat
def read_mask(nproc, meshdir, maskdir, lim1, lim2):
thr = 1.0
# read mask
xmask = np.array([])
zmask = np.array([])
mask = np.array([])
for i in range(0, nproc):
xcoor_proc = _read(os.path.join(meshdir, f'proc{i:06}_x.bin'))
xmask = np.append(xmask, xcoor_proc)
zcoor_proc = _read(os.path.join(meshdir, f'proc{i:06}_z.bin'))
zmask = np.append(zmask, zcoor_proc)
model_proc = _read(os.path.join(maskdir, f'proc{i:06}_gradient_mask.bin'))
mask = np.append(mask, model_proc)
# cut mask to desired limits
if lim1 and lim2:
idx1 = np.argwhere((xmask > -lim1) & (xmask < lim1)).flatten()
idx2 = np.argwhere((zmask > -lim2) & (zmask < lim2)).flatten()
idx3 = np.intersect1d(idx1, idx2).flatten()
xmask = xmask[idx3]
zmask = zmask[idx3]
mask = mask[idx3]
# sort mask and gll points
isort = np.lexsort((xmask,zmask))
xmask = xmask[isort]
zmask = zmask[isort]
mask = mask[isort]
# apply threshold to mask
mask[np.where(mask < thr)] = 0.0
# get gll points on target region
gll_target = np.argwhere(mask >= thr).flatten()
# interpolate mask to a regular grid
interp = LinearNDInterpolator(list(zip(xmask,zmask)), mask)
nx = 800
xregular = np.linspace(xmask.min(), xmask.max(), nx)
zregular = np.linspace(zmask.min(), zmask.max(), nx)
X, Z = np.meshgrid(xregular, zregular)
MASKREG = interp(X.flatten(),Z.flatten())
MASKREG = MASKREG.reshape((nx,nx), order="C")
return X, Z, MASKREG, gll_target
def _read(filename, dtype='float32'):
nbytes = os.path.getsize(filename)
with open(filename, 'rb') as file:
# read size of record
file.seek(0)
n = np.fromfile(file, dtype='int32', count=1)[0]
if n == nbytes-8:
file.seek(4)
data = np.fromfile(file, dtype=dtype)
return data[:-1]
else:
file.seek(0)
data = np.fromfile(file, dtype=dtype)
return data
fontsize = 8.0
figx = 4.0
figy = 2.5
majspa = 2.0
minspa = 0.2
# DO NOT EDIT BELOW THIS LINE
# ===========================
parser = argparse.ArgumentParser()
parser.add_argument('m1_mesh', type=str)
parser.add_argument('m1_model', type=str)
parser.add_argument('m2_mesh', type=str)
parser.add_argument('m2_model', type=str)
parser.add_argument('itrange', type=int, nargs=2)
parser.add_argument('lim1', type=float)
parser.add_argument('lim2', type=float)
parser.add_argument('--fig', type=str, default=None)
parser.add_argument('--sta', type=str, default=None)
parser.add_argument('--vmax', type=float, default=None)
parser.add_argument('--vmin', type=float, default=None)
args = parser.parse_args()
xcoor = np.array([])
zcoor = np.array([])
model = np.array([])
nproc = len(glob(os.path.join(args.m1_model, f"*vs.bin")))
iteration = np.arange(args.itrange[0], args.itrange[1]+1)
misfit = np.empty(len(iteration))
# read target model
for i in range(0, nproc):
xcoor_proc = _read(os.path.join(args.m1_mesh,
'proc{:06}_x.bin'.format(i)))
zcoor_proc = _read(os.path.join(args.m1_mesh,
'proc{:06}_z.bin'.format(i)))
model_proc = _read(os.path.join(args.m1_model,
'proc{:06}_vs.bin'.format(i)))
xcoor = np.append(xcoor, xcoor_proc)
zcoor = np.append(zcoor, zcoor_proc)
model = np.append(model, model_proc)
# cut to desired limits
idx1 = np.argwhere((xcoor > -args.lim1) & (xcoor < args.lim1)).flatten()
idx2 = np.argwhere((zcoor > -args.lim2) & (zcoor < args.lim2)).flatten()
idx3 = np.intersect1d(idx1, idx2).flatten()
xcoor = xcoor[idx3]
zcoor = zcoor[idx3]
model = model[idx3]
# sort model and gll points
isort = np.lexsort((xcoor,zcoor))
xcoor = xcoor[isort]
zcoor = zcoor[isort]
model = model[isort]
# convert coor of model
lon, lat = cart2geo(xcoor,zcoor)
# read mask and get gll points where the model difference is computed
maskdir = "./array_mask/gradient_mask_complete/smoothed"
XMASK, ZMASK, MASKREG, gll_target = read_mask(nproc, args.m1_mesh, maskdir, args.lim1, args.lim2)
# convert coor of mask
XMASK, ZMASK = cart2geo(XMASK, ZMASK)
for j, it in enumerate(iteration):
# read inverted model
xcoor2 = np.array([])
zcoor2 = np.array([])
model2 = np.array([])
for i in range(0, nproc):
xcoor_proc = _read(os.path.join(args.m2_mesh,
'proc{:06}_x.bin'.format(i)))
zcoor_proc = _read(os.path.join(args.m2_mesh,
'proc{:06}_z.bin'.format(i)))
if it == 0:
model_name = "MODEL_INIT"
else:
model_name = f"MODEL_{it:02d}"
try:
model_proc = _read(os.path.join(args.m2_model, model_name,
'proc{:06}_vs.bin'.format(i)))
except Exception:
continue
xcoor2 = np.append(xcoor2, xcoor_proc)
zcoor2 = np.append(zcoor2, zcoor_proc)
model2 = np.append(model2, model_proc)
# cut to desired limits
idx1 = np.argwhere((xcoor2 > -args.lim1) & (xcoor2 < args.lim1)).flatten()
idx2 = np.argwhere((zcoor2 > -args.lim2) & (zcoor2 < args.lim2)).flatten()
idx3 = np.intersect1d(idx1, idx2).flatten()
xcoor2 = xcoor2[idx3]
zcoor2 = zcoor2[idx3]
model2 = model2[idx3]
# sort model and gll points
isort = np.lexsort((xcoor2,zcoor2))
xcoor2 = xcoor2[isort]
zcoor2 = zcoor2[isort]
model2 = model2[isort]
# compute model misfit
misfit[j] = np.sqrt(np.mean(np.square(model2[gll_target]-model[gll_target])))
print('Iteration ', it, 'model misfit: ', misfit[j])
# plot relative perturbations
mdiff = (model2 - model) / model
mdiff *= 100.0
if it == 0:
mdiff0 = mdiff.copy()
# FIGURE
mercator = ccrs.PlateCarree()
extent = [lon.min(), lon.max(), lat.min(), lat.max()]
fig, ax = plt.subplots(1, 1, figsize=(figx, figy),
subplot_kw={"projection": mercator})
ax.set_extent(extent, mercator)
ax.gridlines(alpha=0.0)
# map
cmap = cm.vik.resampled(31)
im = ax.tripcolor(lon, lat, mdiff, cmap=cmap,
linewidth=0.0, edgecolor='face', shading="gouraud",
vmin=args.vmin, vmax=args.vmax, transform=mercator)
# mask
ax.pcolormesh(XMASK, ZMASK, MASKREG, alpha=0.1, cmap="gist_gray",
transform=mercator)
# stations
if args.sta:
sta = np.loadtxt(args.sta, usecols=(2,3), dtype=float)
sta[:,0], sta[:,1] = cart2geo(sta[:,0],sta[:,1])
ax.scatter(sta[:,0], sta[:,1], c='magenta', s=1.0, transform=mercator)
# cities
cities = ['Los Angeles', 'Sacramento', 'Fresno']
ccoor = [[-118.24,34.05], [-121.49,38.58], [-119.78,36.73]]
if not args.lim1 and not args.lim2:
cities2 = ['Mexico City', 'Vancouver', 'Denver', 'Houston', 'Winnipeg',
'Edmonton','Chihuahua']
ccoor2 = [[-99.13, 19.43], [-123.12,49.28], [-104.99,39.73],[-95.36,29.76],
[-97.13,49.89],[-113.49,53.54],[-106.05,28.64]]
cities.extend(cities2)
ccoor.extend(ccoor2)
for cn, city in enumerate(cities):
txtof = 0.1
plt.text(ccoor[cn][0], ccoor[cn][1]+txtof, city,
horizontalalignment='center', fontsize=fontsize*0.63, color="k",
transform=mercator
)
plt.plot(ccoor[cn][0], ccoor[cn][1], marker=".", color="k",
markerfacecolor="k", markersize=1.0,
transform=mercator
)
# political borders and coastline
borders = cfeature.NaturalEarthFeature(
category="cultural",
name="admin_0_boundary_lines_land",
scale="10m",
facecolor="none",
)
ax.add_feature(borders, edgecolor="k", lw=0.3, zorder=4)
ax.coastlines(resolution="10m",lw=0.3, color="k")
# axes ticks
ax.set_xticks(np.arange(lon.min(),lon.max()), crs=mercator)
ax.xaxis.set_major_formatter(pltticker.EngFormatter(unit=u"°", sep=""))
ax.xaxis.set_major_locator(pltticker.MultipleLocator(base=majspa))
ax.xaxis.set_minor_locator(pltticker.MultipleLocator(base=minspa))
ax.tick_params(axis="x", labelsize=fontsize)
ax.set_yticks(np.arange(lat.min(),lat.max()), crs=mercator)
ax.yaxis.set_major_formatter(pltticker.EngFormatter(unit=u"°", sep=""))
ax.yaxis.set_major_locator(pltticker.MultipleLocator(base=majspa))
ax.yaxis.set_minor_locator(pltticker.MultipleLocator(base=minspa))
ax.tick_params(axis="y", labelsize=fontsize)
# colorbar
cbar = plt.colorbar(mappable=im, pad=0.02, fraction=0.03)
cbar.ax.tick_params(labelsize=fontsize)
# title and labels
cbar.set_label("$\Delta$v/v [%]", fontsize=fontsize)
ax.set_xlabel("longitude", fontsize=fontsize)
ax.set_ylabel("latitude", fontsize=fontsize)
# plot/save figure
if args.fig:
plt.savefig(os.path.join(args.fig,
f"model_error_{it:02d}.png"), dpi=300,
bbox_inches="tight")
else:
plt.show()
plt.close()
# # histogram of model errors
# mean0 = np.mean(mdiff0[gll_target])
# std0 = np.std(mdiff0[gll_target])
# mean1 = np.mean(mdiff[gll_target])
# std1 = np.std(mdiff[gll_target])
#
# fig, ax = plt.subplots()
# fig.set_size_inches(2.6,3.0)
#
# maxval = np.max(np.abs(mdiff0[gll_target]))
# bins = np.arange(-np.ceil(maxval),np.ceil(maxval), 1.0)
#
# ax.hist(mdiff0[gll_target],bins,histtype="bar",
# color="lightskyblue",edgecolor=None,alpha=1.0,linewidth=1.5)
# ax.hist(mdiff[gll_target],bins,histtype="bar",
# color="lightsalmon",edgecolor="red",alpha=1.0,linewidth=1.0)
# ax.hist(mdiff0[gll_target],bins,histtype="step",
# color="lightskyblue",edgecolor="blue",alpha=1.0,linewidth=1.5)
#
# ytext = 3500
# ax.text(-10,ytext,
# f"$\mu$: {mean0:.2f}\n$\sigma$: {std0:.2f}",
# color="blue",fontsize=fontsize*0.95)
#
# ax.text(5,ytext,
# f"$\mu$: {mean1:.2f}\n$\sigma$: {std1:.2f}",
# color="red",fontsize=fontsize*0.95)
#
# ax.set_xlabel("$\Delta$v/v [%]", fontsize=fontsize)
# ax.set_ylabel("count", fontsize=fontsize)
#
# ax.tick_params(axis="x",labelsize=fontsize)
# ax.tick_params(axis="y",labelsize=fontsize)
#
# ax.set_xlim(-15,15)
# ax.set_ylim(0.0, 4000)
#
# plt.grid(linestyle="--")
# plt.savefig(os.path.join(args.fig,
# f"model_error_hist_{it:02d}.png"),dpi=300,bbox_inches="tight")
# plt.close()
#
## save/plot misifit evolution
#np.savetxt(os.path.join(args.m2_model, f"model_misfit_evolution.txt"),
# np.array([iteration, misfit]).T)
#
#plt.plot(iteration, misfit, 'k-o')
#plt.xlabel('iteration')
#plt.ylabel('model misfit [m/s]')
#plt.grid()
#
#if args.fig:
# plt.savefig(os.path.join(args.fig,
# f"model_misfit.png"))
#else:
# plt.show()
#plt.close()