forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
96 lines (82 loc) · 4.12 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import numpy as np
import torch
from tqdm import tqdm
from data.data_loader import SpectrogramDataset, AudioDataLoader
from decoder import GreedyDecoder
from model import DeepSpeech
from opts import add_decoder_args, add_inference_args
parser = argparse.ArgumentParser(description='DeepSpeech transcription')
parser = add_inference_args(parser)
parser.add_argument('--test-manifest', metavar='DIR',
help='path to validation manifest csv', default='data/test_manifest.csv')
parser.add_argument('--batch-size', default=20, type=int, help='Batch size for training')
parser.add_argument('--num-workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--verbose', action="store_true", help="print out decoded output and error of each sample")
no_decoder_args = parser.add_argument_group("No Decoder Options", "Configuration options for when no decoder is "
"specified")
no_decoder_args.add_argument('--output-path', default=None, type=str, help="Where to save raw acoustic output")
parser = add_decoder_args(parser)
args = parser.parse_args()
if __name__ == '__main__':
torch.set_grad_enabled(False)
model = DeepSpeech.load_model(args.model_path)
if args.cuda:
model.cuda()
model.eval()
labels = DeepSpeech.get_labels(model)
audio_conf = DeepSpeech.get_audio_conf(model)
if args.decoder == "beam":
from decoder import BeamCTCDecoder
decoder = BeamCTCDecoder(labels, lm_path=args.lm_path, alpha=args.alpha, beta=args.beta,
cutoff_top_n=args.cutoff_top_n, cutoff_prob=args.cutoff_prob,
beam_width=args.beam_width, num_processes=args.lm_workers)
elif args.decoder == "greedy":
decoder = GreedyDecoder(labels, blank_index=labels.index('_'))
else:
decoder = None
target_decoder = GreedyDecoder(labels, blank_index=labels.index('_'))
test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.test_manifest, labels=labels,
normalize=True)
test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
num_workers=args.num_workers)
total_cer, total_wer, num_tokens, num_chars = 0, 0, 0, 0
output_data = []
for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)):
inputs, targets, input_percentages, target_sizes = data
input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
# unflatten targets
split_targets = []
offset = 0
for size in target_sizes:
split_targets.append(targets[offset:offset + size])
offset += size
if args.cuda:
inputs = inputs.cuda()
out, output_sizes = model(inputs, input_sizes)
if decoder is None:
# add output to data array, and continue
output_data.append((out.numpy(), output_sizes.numpy()))
continue
decoded_output, _ = decoder.decode(out.data, output_sizes.data)
target_strings = target_decoder.convert_to_strings(split_targets)
for x in range(len(target_strings)):
transcript, reference = decoded_output[x][0], target_strings[x][0]
wer_inst = decoder.wer(transcript, reference)
cer_inst = decoder.cer(transcript, reference)
total_wer += wer_inst
total_cer += cer_inst
num_tokens += len(reference.split())
num_chars += len(reference)
if args.verbose:
print("Ref:", reference.lower())
print("Hyp:", transcript.lower())
print("WER:", float(wer_inst) / len(reference.split()), "CER:", float(cer_inst) / len(reference), "\n")
if decoder is not None:
wer = float(total_wer) / num_tokens
cer = float(total_cer) / num_chars
print('Test Summary \t'
'Average WER {wer:.3f}\t'
'Average CER {cer:.3f}\t'.format(wer=wer * 100, cer=cer * 100))
else:
np.save(args.output_path, output_data)