This repository has been archived by the owner on Nov 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtrain.lua
467 lines (426 loc) · 17.3 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
-- Copyright (c) 2016-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
require'optim'
function train_batch(test_run)
-- start a new episode
local stat = {}
local batch = batch_init(g_opts.batch_size)
-- TESTS
assert(g_opts.nactions == batch[1].agent.nactions)
local game_nagents = 0
for i = 1, batch[1].nagents do
if (not batch[1].agents[i].team) or batch[1].agents[i].team == 'team1' then
game_nagents = game_nagents + 1
end
end
assert(g_opts.nagents == game_nagents)
-- record episode states
local reward = {}
local input = {}
local action = {}
local action_comm = {}
local active = {}
-- for recurrent models
local in_dim = (g_opts.visibility*2+1)^2 * g_opts.nwords
local hid_state = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.hidsz):fill(0)
local hid_grad = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.hidsz):fill(0)
local cell_state, cell_grad
if g_opts.model == 'lstm' then
cell_state = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.hidsz):fill(0)
cell_grad = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.hidsz):fill(0)
end
if g_opts.recurrent then
hid_state:fill(g_opts.init_hid)
if g_opts.model == 'lstm' then
cell_state:fill(g_opts.init_hid)
end
end
-- communication states
local comm_state = torch.zeros(g_opts.batch_size * g_opts.nagents, g_opts.nagents, g_opts.hidsz)
local comm_grad = torch.zeros(g_opts.batch_size * g_opts.nagents, g_opts.nagents, g_opts.hidsz)
local comm_mask_default = torch.ones(g_opts.nagents, g_opts.nagents)
local comm_mask = {}
for s = 1, g_opts.nagents do
for d = 1, g_opts.nagents do
if s == d then
-- no self talking
comm_mask_default[s][d] = 0
end
end
end
local model_ids = {}
local minds = torch.Tensor(#batch, g_opts.nagents)
for b = 1, #batch do
for a = 1, g_opts.nagents do
if g_opts.fully_connected then
minds[b][a] = a
else
minds[b][a] = torch.random(g_opts.nminds)
end
end
end
minds = minds:view(-1)
for i = 1, g_opts.nhop do
model_ids[i] = minds:clone()
if g_opts.unshare_hops then
model_ids[i]:add((i-1)*g_opts.nminds)
end
end
-- play the games
for t = 1, g_opts.max_steps * g_opts.nhop do
active[t] = batch_active(batch)
local x = batch_input(batch, active[t], t)
input[t] = {}
input[t][g_model_inputs['input']] = x
local hop_id = (t-1) % g_opts.nhop + 1
if g_opts.nmodels > 1 then
input[t][g_model_inputs['model_ids']] = model_ids[hop_id]
end
input[t][g_model_inputs['prev_hid']] = hid_state
if g_opts.model == 'lstm' then
input[t][g_model_inputs['prev_cell']] = cell_state
end
if g_opts.comm then
input[t][g_model_inputs['comm_in']] = comm_state
end
local out = g_model:forward(input[t])
-- act when model hops completed
if t % g_opts.nhop == 0 then
stat.step_active = (stat.step_active or 0) + active[t]:sum()
stat.step_count = (stat.step_count or 0) + #batch * g_opts.nagents
action[t] = sample_multinomial(torch.exp(out[g_model_outputs['action_prob']]))
if test_run then
batch[1].map:print_ascii()
os.execute('sleep 0.2')
end
batch_act(batch, action[t]:view(-1), active[t])
batch_update(batch)
reward[t] = batch_reward(batch, active[t], t == g_opts.max_steps * g_opts.nhop)
if test_run then
for a = 1, g_opts.nagents do
if active[t][a] == 1 then
local agent = get_agent(batch[1], a)
print('agent ' .. a .. ' reward:', reward[t][a],
'action: ' .. agent.action_names[action[t][a][1]],
'HP: ' .. (agent.attr.health or 0),
'name: ' .. agent.attr.name)
end
end
end
end
hid_state = out[g_model_outputs['hidstate']]:clone()
if g_opts.model == 'lstm' then
cell_state = out[g_model_outputs['cellstate']]:clone()
end
if g_opts.nactions_comm > 1 then
-- discrete communication words
action_comm[t] = sample_multinomial(torch.exp(out[g_model_outputs['action_comm']]))
end
if g_opts.comm or g_opts.nactions_comm > 1 then
-- determine which agent can talk to which agent?
local m = comm_mask_default:view(1, g_opts.nagents, g_opts.nagents)
m = m:expand(g_opts.batch_size, g_opts.nagents, g_opts.nagents):clone()
if g_opts.fully_connected then
-- pass all comm because it is fully connected
else
-- inactive agents don't communicate
local m2 = active[t]:view(g_opts.batch_size, g_opts.nagents, 1):clone()
m2 = m2:expandAs(m):clone()
m:cmul(m2)
m:cmul(m2:transpose(2,3))
end
if g_opts.comm_range > 0 then
-- far away agents can't communicate
for i, g in pairs(batch) do
for s = 1, g_opts.nagents do
for d = 1, g_opts.nagents do
local dy = math.abs(get_agent(g, s).loc.y - get_agent(g, d).loc.y)
local dx = math.abs(get_agent(g, s).loc.x - get_agent(g, d).loc.x)
local r = math.max(dy, dx)
if r > g_opts.comm_range then
m[i][s][d] = 0
end
end
end
end
end
if g_opts.comm_mode == 'avg' then
-- average comms by dividing by number of agents
m:cdiv(m:sum(2):expandAs(m):clone():add(m:eq(0):float()))
end
m:div(g_opts.comm_scale_div)
comm_mask[t] = m
end
if g_opts.comm then
-- communication vectors for next step
local h = out[g_model_outputs['comm_out']]:clone()
h = h:view(g_opts.batch_size, g_opts.nagents, g_opts.nagents, g_opts.hidsz)
-- apply mask
local m = comm_mask[t]
m = m:view(g_opts.batch_size, g_opts.nagents, g_opts.nagents, 1)
m = m:expandAs(h):clone()
h:cmul(m)
comm_state = h:transpose(2,3):clone()
comm_state:resize(g_opts.batch_size * g_opts.nagents, g_opts.nagents, g_opts.hidsz)
end
-- pass discrete communication words between agents
-- (talk even between hops)
if g_opts.nactions_comm > 1 then
batch_act_comm(batch, action_comm[t]:view(-1), comm_mask[t])
if test_run then
for a = 1, g_opts.nagents do
print('agent ' .. a .. ' talk:' .. action_comm[t][a][1])
end
end
end
-- restart internal states if necessary
if t % g_opts.nhop == 0 and g_opts.recurrent == false then
hid_state:zero()
if g_opts.model == 'lstm' then
cell_state:zero()
end
if g_opts.comm then
comm_state:zero()
end
if g_opts.nactions_comm > 1 then
batch_reset_comm(batch)
end
end
end
local success = batch_success(batch)
local reward_terminal = batch_terminal_reward(batch)
if test_run then
for a = 1, g_opts.nagents do
print('agent' .. a, 'reward terminal: ' .. reward_terminal[a])
end
print('success: ' .. success[1])
return
end
-- do back-propagation
g_paramdx:zero()
local reward_sum = torch.Tensor(g_opts.batch_size * g_opts.nagents):zero()
reward_sum:add(reward_terminal)
local t_step = 1
if g_opts.unroll > 0 then t_step = g_opts.unroll_freq end
-- go back in time
for t_game = g_opts.max_steps, 1, -t_step do
if g_opts.recurrent == false or g_opts.unroll > 0 then
hid_grad:zero()
if g_opts.model == 'lstm' then
cell_grad:zero()
end
if g_opts.comm then
comm_grad:zero()
end
end
local t_sta = t_game * g_opts.nhop
local t_end = (t_game - 1) * g_opts.nhop + 1
if g_opts.unroll > 0 then
t_end = t_end - g_opts.unroll * g_opts.nhop
end
t_end = math.max(1, t_end)
for t = t_sta, t_end, -1 do
local allow_reward_grad = true
if t <= (t_game - t_step) * g_opts.nhop then allow_reward_grad = false end
local out = g_model:forward(input[t])
local grad = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.nactions):zero()
local bl_grad = torch.Tensor(g_opts.batch_size * g_opts.nagents, 1):zero()
local action_comm_grad
if g_opts.nactions_comm > 1 then
action_comm_grad = torch.Tensor(g_opts.batch_size * g_opts.nagents, g_opts.nactions_comm):zero()
end
if allow_reward_grad and t % g_opts.nhop == 0 then
reward_sum:add(reward[t]) -- cumulative reward
end
local R = reward_sum:clone()
if not g_opts.no_coop then
-- average agents' rewards
R = R:view(#batch, g_opts.nagents)
R = R:mean(2):expandAs(R):clone()
R = R:view(-1, 1)
end
R:cmul(active[t])
R:mul(g_opts.reward_mult)
local baseline
if allow_reward_grad and (t % g_opts.nhop == 0 or g_opts.nactions_comm > 1) then
-- do baseline update on every hop with discrete comm
baseline = out[g_model_outputs['baseline']]
if g_opts.bl_off then baseline:zero() end
baseline:cmul(active[t])
stat.bl_cost = (stat.bl_cost or 0) + g_bl_loss:forward(baseline, R)
stat.bl_count = (stat.bl_count or 0) + active[t]:sum()
bl_grad = g_bl_loss:backward(baseline, R)
bl_grad:mul(g_opts.alpha):div(g_opts.batch_size)
if g_opts.bl_off then bl_grad:zero() end
if g_opts.nactions_comm > 1 then
-- gradient for discrete comm words
action_comm_grad:scatter(2, action_comm[t], baseline - R)
if g_opts.dcomm_entropy_cost > 0 then
local logp = out[g_model_outputs['action_comm']]
local entropy_grad = logp:clone():add(1)
entropy_grad:cmul(torch.exp(logp))
entropy_grad:mul(g_opts.dcomm_entropy_cost)
entropy_grad:cmul(active[t]:view(-1,1):expandAs(entropy_grad):clone())
action_comm_grad:add(entropy_grad)
end
action_comm_grad:div(g_opts.batch_size)
end
end
if allow_reward_grad and t % g_opts.nhop == 0 then
local R_action = baseline - R
grad:scatter(2, action[t], R_action)
grad:div(g_opts.batch_size)
end
local all_grad = {}
all_grad[g_model_outputs['action_prob']] = grad
all_grad[g_model_outputs['baseline']] = bl_grad
if g_opts.nactions_comm > 1 then
all_grad[g_model_outputs['action_comm']] = action_comm_grad
end
all_grad[g_model_outputs['hidstate']] = hid_grad
if g_opts.model == 'lstm' then
all_grad[g_model_outputs['cellstate']] = cell_grad
end
if g_opts.comm then
all_grad[g_model_outputs['comm_out']] = comm_grad
end
if g_opts.clip_grad > 0 then
all_grad[g_model_outputs['hidstate']]:renorm(2, 1, g_opts.clip_grad)
if g_opts.model == 'lstm' then
all_grad[g_model_outputs['cellstate']]:renorm(2, 1, g_opts.clip_grad)
end
if g_opts.comm then
all_grad[g_model_outputs['comm_out']]:renorm(2, 1, g_opts.clip_grad)
end
end
g_model:backward(input[t], all_grad)
hid_grad = g_modules['prev_hid'].gradInput:clone()
if g_opts.model == 'lstm' then
cell_grad = g_modules['prev_cell'].gradInput:clone()
end
if g_opts.comm and t > 1 then
local h = g_modules['comm_in'].gradInput:clone()
h = h:view(g_opts.batch_size, g_opts.nagents, g_opts.nagents, g_opts.hidsz)
comm_grad = h:transpose(2,3):clone()
-- apply mask
local m = comm_mask[t-1]
m = m:view(g_opts.batch_size, g_opts.nagents, g_opts.nagents, 1)
m = m:expandAs(comm_grad):clone()
comm_grad:cmul(m)
comm_grad:resize(g_opts.batch_size * g_opts.nagents, g_opts.nagents, g_opts.hidsz)
end
end
end
-- R:resize(g_opts.batch_size, g_opts.nagents)
stat.reward = reward_sum:sum()
stat.success = success:sum()
stat.count = g_opts.batch_size
return stat
end
function train_batch_thread(opts_orig, paramx_orig)
g_opts = opts_orig
g_paramx:copy(paramx_orig)
local stat = train_batch()
return g_paramdx, stat
end
-- EVERYTHING ABOVE RUNS ON THREADS
function train(N)
for n = 1, N do
local ep = #g_log + 1
if g_opts.curriculum_end > 0 then
-- adjust curriculum
assert(g_opts.curriculum_end > g_opts.curriculum_sta)
local h = (ep - g_opts.curriculum_sta)/(g_opts.curriculum_end - g_opts.curriculum_sta)
h = math.min(1, math.max(0, h))
g_factory:set_hardness(h)
if g_opts.nworker > 1 then
for w = 1, g_opts.nworker do
g_workers:addjob(w,
function(hh)
g_factory:set_hardness(hh)
end,
function() end, h)
end
end
end
local stat = {}
for k = 1, g_opts.nbatches do
if g_opts.show then xlua.progress(k, g_opts.nbatches) end
if g_opts.nworker > 1 then
g_paramdx:zero()
for w = 1, g_opts.nworker do
g_workers:addjob(w, train_batch_thread,
function(paramdx_thread, s)
g_paramdx:add(paramdx_thread)
merge_stat(stat, s)
end, g_opts, g_paramx)
end
g_workers:synchronize()
else
local s = train_batch()
merge_stat(stat, s)
end
g_update_param(g_paramx, g_paramdx)
end
for k, v in pairs(stat) do
if string.sub(k, 1, 5) == 'count' then
local s = string.sub(k, 6)
stat['reward' .. s] = stat['reward' .. s] / v
stat['success' .. s] = stat['success' .. s] / v
end
end
if stat.bl_count ~= nil and stat.bl_count > 0 then
stat.bl_cost = stat.bl_cost / stat.bl_count
else
stat.bl_cost = 0
end
stat.step_active = stat.step_active / stat.step_count
stat.epoch = #g_log + 1
print(format_stat(stat))
table.insert(g_log, stat)
g_save_model()
if g_opts.plot then
local p = torch.zeros(#g_log)
for i = 1, #g_log do
p[i] = g_log[i].reward
end
gnuplot.plot(p)
end
end
end
function g_update_param(x, dx)
dx:div(g_opts.nworker)
if g_opts.max_grad_norm > 0 then
if dx:norm() > g_opts.max_grad_norm then
dx:div(dx:norm() / g_opts.max_grad_norm)
end
end
local f = function(x0) return x, dx end
if not g_optim_state then g_optim_state = {} end
local config = {learningRate = g_opts.lrate}
if g_opts.optim == 'sgd' then
config.momentum = g_opts.momentum
config.weightDecay = g_opts.wdecay
optim.sgd(f, x, config, g_optim_state)
elseif g_opts.optim == 'rmsprop' then
config.alpha = g_opts.rmsprop_alpha
config.epsilon = g_opts.rmsprob_eps
config.weightDecay = g_opts.wdecay
optim.rmsprop(f, x, config, g_optim_state)
elseif g_opts.optim == 'adam' then
config.beta1 = g_opts.adam_beta1
config.beta2 = g_opts.adam_beta2
config.epsilon = g_opts.adam_eps
optim.adam(f, x, config, g_optim_state)
else
error('wrong optim')
end
if g_opts.encoder_lut then
-- zero NIL embedding
g_modules['encoder_lut'].weight[g_opts.encoder_lut_nil]:zero()
end
end