-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathtrain.py
1020 lines (928 loc) · 30.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2019-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import json
import random
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parents[2]))
import codegen_sources
from codegen_sources.model.src.constants import TOKENIZATION_MODES
from codegen_sources.model.src.data.loader import check_data_params, load_data
from codegen_sources.model.src.evaluation.evaluator import (
EncDecEvaluator,
SingleEvaluator,
)
from codegen_sources.model.src.model import (
build_classifier,
build_model,
check_model_params,
)
from codegen_sources.model.src.slurm import init_distributed_mode, init_signal_handler
from codegen_sources.model.src.trainer import EncDecTrainer, SingleTrainer
from codegen_sources.model.src.utils import (
bool_flag,
initialize_exp,
print_memory,
set_sampling_probs,
shuf_order,
)
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Language transfer")
# main parameters
parser.add_argument(
"--dump_path", type=str, default="./dumped/", help="Experiment dump path"
)
parser.add_argument("--exp_name", type=str, default="", help="Experiment name")
parser.add_argument(
"--save_periodic",
type=int,
default=0,
help="Save the model periodically (0 to disable)",
)
parser.add_argument("--exp_id", type=str, default="", help="Experiment ID")
# float16 / AMP API
parser.add_argument(
"--fp16", type=bool_flag, default=False, help="Run model with float16"
)
parser.add_argument(
"--efficient_attn",
type=str,
default=None,
choices=["flash", "cutlass", "fctls_bflsh", "auto"],
help="If set, uses efficient attention from xformers. Flash attention only works on A100 GPUs.",
)
parser.add_argument(
"--amp",
type=int,
default=-1,
help="Use AMP wrapper for float16 / distributed / gradient accumulation. Level of optimization. -1 to disable.",
)
parser.add_argument(
"--apex",
type=bool_flag,
default=False,
help="Whether to use apex for fp16 computation. By default, torch amp.",
)
# only use an encoder (use a specific decoder for machine translation)
parser.add_argument(
"--encoder_only", type=bool_flag, default=True, help="Only use an encoder"
)
# model parameters
parser.add_argument("--emb_dim", type=int, default=512, help="Embedding layer size")
parser.add_argument(
"--emb_dim_encoder", type=int, default=0, help="Embedding layer size"
)
parser.add_argument(
"--emb_dim_decoder", type=int, default=0, help="Embedding layer size"
)
parser.add_argument(
"--n_layers", type=int, default=4, help="Number of Transformer layers"
)
parser.add_argument(
"--n_layers_encoder",
type=int,
default=0,
help="Number of Transformer layers for the encoder",
)
parser.add_argument(
"--n_layers_decoder",
type=int,
default=0,
help="Number of Transformer layers for the decoder",
)
parser.add_argument(
"--n_heads", type=int, default=8, help="Number of Transformer heads"
)
parser.add_argument("--dropout", type=float, default=0, help="Dropout")
parser.add_argument(
"--attention_dropout",
type=float,
default=0,
help="Dropout in the attention layer",
)
parser.add_argument(
"--gelu_activation",
type=bool_flag,
default=False,
help="Use a GELU activation instead of ReLU",
)
parser.add_argument(
"--share_inout_emb",
type=bool_flag,
default=True,
help="Share input and output embeddings",
)
parser.add_argument(
"--sinusoidal_embeddings",
type=bool_flag,
default=False,
help="Use sinusoidal embeddings",
)
parser.add_argument(
"--layer_dropout", type=float, default=0.0, help="Layer dropout ratio"
)
parser.add_argument(
"--min_layers",
type=int,
default=2,
help="Minimum number of layers remaining after layer dropout",
)
# CAPE relative embeddings
parser.add_argument(
"--cape_embeddings",
type=bool_flag,
default=False,
help="Use CAPE embeddings https://arxiv.org/pdf/2106.03143.pdf",
)
parser.add_argument(
"--cape_global_shift",
type=float,
default=5.0,
help="CAPE global shift parameter",
)
parser.add_argument(
"--cape_local_shift",
type=float,
default=0.5,
help="CAPE local shift parameter, above 0.5 token ordering is not preserved",
)
parser.add_argument(
"--cape_global_scaling",
type=float,
default=1.0,
help="CAPE max global scaling parameter. At 1, no scaling",
)
parser.add_argument(
"--discrete_cape_max",
type=int,
default=0,
help="Discrete cape global shift maximum. At 0, no shift.",
)
parser.add_argument(
"--use_lang_emb", type=bool_flag, default=True, help="Use language embedding"
)
# causal language modeling task parameters
parser.add_argument(
"--context_size",
type=int,
default=0,
help="Context size (0 means that the first elements in sequences won't have any context)",
)
# masked language modeling task parameters
parser.add_argument(
"--word_pred",
type=float,
default=0.15,
help="Fraction of words for which we need to make a prediction in MLM.",
)
parser.add_argument(
"--sample_alpha",
type=float,
default=0,
help="Exponent for transforming word counts to probabilities (~word2vec sampling)",
)
parser.add_argument(
"--word_mask_keep_rand",
type=str,
default="0.8,0.1,0.1",
help="Fraction of words to mask out / keep / randomize, among the words to predict",
)
parser.add_argument(
"--mask_length",
type=str,
default="",
help="Length distribution of the masked spans. "
"No span masking if kept empty. Constant if integer. Poisson if 'poisson'",
)
parser.add_argument(
"--poisson_lambda",
type=float,
default=3.0,
help="Parameter of the poisson distribution for span length",
)
# input sentence noise
parser.add_argument(
"--word_shuffle",
type=float,
default=0,
help="Randomly shuffle input words (0 to disable)",
)
parser.add_argument(
"--word_dropout",
type=float,
default=0,
help="Randomly dropout input words (0 to disable)",
)
parser.add_argument(
"--word_blank",
type=float,
default=0,
help="Randomly blank input words (0 to disable)",
)
# data
parser.add_argument("--data_path", type=str, default="", help="Data path")
parser.add_argument(
"--lgs", type=str, default="", help="Languages (lg1-lg2-lg3 .. ex: en-fr-es-de)"
)
parser.add_argument(
"--lgs_mapping",
type=str,
default="",
help="Map the lngs to pretrained lgs, java_sa:java_obfuscated"
"then the emb of java_sa in this XP will be mapped to the emb of java_obfuscated in pretrained model",
)
parser.add_argument(
"--lgs_id_mapping",
type=str,
default="",
help="Map the in or out language id of some languages to others for mt_steps "
"for instance 'java_np:java_buggy-java_resolved' means java_np gets the "
"same language embeddings as java_buggy for input sentences and java_resolved "
"for output sentences. Different mappings separated by commas",
)
parser.add_argument(
"--max_vocab",
type=int,
default=-1,
help="Maximum vocabulary size (-1 to disable)",
)
parser.add_argument(
"--min_count", type=int, default=0, help="Minimum vocabulary count"
)
parser.add_argument(
"--lg_sampling_factor", type=float, default=-1, help="Language sampling factor"
)
parser.add_argument(
"--has_sentence_ids",
type=str,
default="",
help="Datasets with parallel sentence ids. Datasets separated by ,. "
"Example 'valid|para,train|lang1 if all parallel valid datasets and train lang1 datasets have ids",
)
# batch parameters
parser.add_argument(
"--bptt", type=int, default=256, help="Sequence length for stream dataset"
)
parser.add_argument(
"--max_len",
type=int,
default=100,
help="Maximum length of sentences (after BPE)",
)
parser.add_argument(
"--group_by_size",
type=bool_flag,
default=True,
help="Sort sentences by size during the training",
)
parser.add_argument(
"--batch_size", type=int, default=32, help="Number of sentences per batch"
)
parser.add_argument(
"--max_batch_size",
type=int,
default=0,
help="Maximum number of sentences per batch (used in combination with tokens_per_batch, 0 to disable)",
)
parser.add_argument(
"--tokens_per_batch", type=int, default=-1, help="Number of tokens per batch"
)
parser.add_argument(
"--eval_tokens_per_batch",
type=int,
default=None,
help="Number of tokens per batch for evaluation. By default, same as for training.",
)
parser.add_argument(
"--gen_tpb_multiplier",
type=int,
default=1,
help="Multiplier of token per batch during generation when doing back translation. Typically 4",
)
# training parameters
parser.add_argument(
"--split_data",
type=bool_flag,
default=False,
help="Split data across workers of a same node",
)
parser.add_argument(
"--split_data_accross_gpu",
type=str,
default="local",
help="Split data across GPU locally or globally. Set 'local' or 'global'",
)
parser.add_argument(
"--optimizer",
type=str,
default="adam,lr=0.0001",
help="Optimizer (SGD / RMSprop / Adam, etc.)",
)
parser.add_argument(
"--clip_grad_norm",
type=float,
default=1,
help="Clip gradients norm (0 to disable)",
)
parser.add_argument(
"--epoch_size",
type=int,
default=100000,
help="Epoch size / evaluation frequency (-1 for parallel data size)",
)
parser.add_argument(
"--max_epoch", type=int, default=100000, help="Maximum epoch size"
)
parser.add_argument(
"--stopping_criterion",
type=str,
default="",
help="Stopping criterion, and number of non-increase before stopping the experiment",
)
parser.add_argument(
"--validation_metrics", type=str, default="", help="Validation metrics"
)
parser.add_argument(
"--accumulate_gradients",
type=int,
default=1,
help="Accumulate model gradients over N iterations (N times larger batch sizes)",
)
parser.add_argument(
"--add_eof_to_stream",
type=bool_flag,
default=False,
help="Whether to add </s> at the beginning "
"of every sentence in steam datasets."
"It matters for MLM.",
)
# training coefficients
parser.add_argument(
"--lambda_mlm", type=str, default="1", help="Prediction coefficient (MLM)"
)
parser.add_argument(
"--lambda_clm", type=str, default="1", help="Causal coefficient (LM)"
)
parser.add_argument("--lambda_ae", type=str, default="1", help="AE coefficient")
parser.add_argument("--lambda_tae", type=str, default="1", help="TAE coefficient")
parser.add_argument("--lambda_mt", type=str, default="1", help="MT coefficient")
parser.add_argument(
"--lambda_do", type=str, default="1", help="Deobfuscation coefficient"
)
parser.add_argument("--lambda_bt", type=str, default="1", help="BT coefficient")
parser.add_argument(
"--lambda_st", type=str, default="1", help="Self-training coefficient"
)
parser.add_argument(
"--lambda_classif",
type=str,
default="1",
help="Classificationlambda coefficient - can have one per pair of lang/label - format 'lang1-label1::lambda / lang2-label2::lambda / lambda' or 'lang1-label1::lambda / lang2-label2::lambda' or 'lambda'",
)
# training steps
parser.add_argument(
"--clm_steps", type=str, default="", help="Causal prediction steps (CLM)"
)
parser.add_argument(
"--mlm_steps", type=str, default="", help="Masked prediction steps (MLM / TLM)"
)
parser.add_argument(
"--mt_steps", type=str, default="", help="Machine translation steps"
)
parser.add_argument(
"--cmt_steps",
type=str,
default="",
help="Conditioned machine translation steps",
)
parser.add_argument(
"--disc_steps", type=str, default="", help="Discriminator training steps"
)
parser.add_argument("--do_steps", type=str, default="", help="Deobfuscation steps")
parser.add_argument(
"--obf_proba",
type=float,
default=0.5,
help="For Deobfuscation steps, probability of obsfuscation. If = 1 everything is obfuscated, 0 only one variable.",
)
parser.add_argument(
"--st_steps", type=str, default="", help="Self trainings teps using unit tests"
)
parser.add_argument(
"--ae_steps", type=str, default="", help="Denoising auto-encoder steps"
)
parser.add_argument(
"--tae_steps",
type=str,
default="",
help="Concatenated denoising auto-encoding steps",
)
parser.add_argument(
"--bt_steps", type=str, default="", help="Back-translation steps"
)
parser.add_argument(
"--mt_spans_steps",
type=str,
default="",
help="Machine translation steps. Format for one step is lang1-lang2-span. Steps are separated by commas.",
)
parser.add_argument(
"--spans_emb_encoder",
type=bool_flag,
default=False,
help="Whether to use span embeddings in the encoder",
)
parser.add_argument(
"--classif_steps", type=str, default="", help="Classification steps"
)
# reload pretrained embeddings / pretrained model / checkpoint
parser.add_argument(
"--reload_emb", type=str, default="", help="Reload pretrained word embeddings"
)
parser.add_argument(
"--reload_model", type=str, default="", help="Reload a pretrained model"
)
parser.add_argument(
"--reload_encoder_attn_on_decoder",
type=bool_flag,
default=False,
help="If true, reload encoder attention on decoder if there is no pre-trained decoder.",
)
parser.add_argument(
"--reload_encoder_for_decoder",
type=bool_flag,
default=False,
help="Reload a the encoder of the pretrained model for the decoder.",
)
parser.add_argument(
"--tokenization_mode",
type=str,
default="fastbpe",
choices=TOKENIZATION_MODES,
help="Type of tokenization, can be fastbpe, roberta or sentencepiece"
"If we reload a pretrained roberta, need to put this params to True that positions idx are computed in the roberta way and use gelu.",
)
parser.add_argument(
"--sentencepiece_model_path",
type=Path,
default=Path(codegen_sources.__file__).resolve().parents[1]
/ "data"
/ "bpe"
/ "sentencepiece"
/ "sentencepiece_32k_v2"
/ "model",
help="Path to sentencepiece model. Only used if tokenization_mode is set to 'sentencepiece'",
)
parser.add_argument(
"--reload_checkpoint", type=str, default="", help="Reload a checkpoint"
)
# beam search (for MT only)
parser.add_argument(
"--beam_size",
type=int,
default=1,
help="Beam size, default = 1 (greedy decoding)",
)
parser.add_argument(
"--length_penalty",
type=float,
default=1,
help="Length penalty, values < 1.0 favor shorter sentences, while values > 1.0 favor longer ones.",
)
parser.add_argument(
"--early_stopping",
type=bool_flag,
default=False,
help="Early stopping, stop as soon as we have `beam_size` hypotheses, although longer ones may have better scores.",
)
# sampling at eval time
parser.add_argument(
"--number_samples",
type=int,
default=1,
help="Number of examples to sample (default = 1)",
)
parser.add_argument(
"--eval_temperature",
type=float,
default=None,
help="Evaluation temperature when using several samples",
)
# BT parameters
parser.add_argument(
"--bt_sample_temperature",
type=str,
default="0",
help="At BT training, sample temperature for generation",
)
parser.add_argument(
"--bt_max_len",
type=int,
default=None,
help="At BT max length of generations. Will be max_len by default.",
)
# ST parameters
parser.add_argument(
"--st_sample_temperature",
type=str,
default="0",
help="At ST training, sample temperature for generation",
)
parser.add_argument(
"--st_sample_cache_ratio",
type=str,
default="2",
help="At ST training, probability to sample from cache. If integer, sampling deterministically n times for each creation step",
)
parser.add_argument(
"--st_limit_tokens_per_batch",
type=bool_flag,
default=True,
help="At ST training, whether to limit batch size based on tokens per batch",
)
parser.add_argument(
"--st_sample_size",
type=int,
default=1,
help="Batch size for data sampled from cache",
)
parser.add_argument(
"--st_remove_proba",
type=float,
default=0.0,
help="Proba to remove sampled elements from cache",
)
parser.add_argument(
"--cache_warmup",
type=int,
default=500,
help="Batch size for data sampled from cache",
)
parser.add_argument(
"--robin_cache",
type=bool_flag,
default=False,
help="Whether to use the round robin cache",
)
parser.add_argument(
"--st_min_asserts",
type=str,
default="2",
help="Minimum number of asserts for the unit tests",
)
parser.add_argument(
"--st_show_stats",
type=bool,
default=False,
help="Whether to show stats about the created tests",
)
parser.add_argument(
"--st_min_mutation_score",
type=str,
default="0.9",
help="Minimum mutation score for the unit tests",
)
parser.add_argument(
"--st_refresh_iterator_rate",
type=int,
default=-1,
help="rate for refreshing the iterator taking new cutoff rate into account",
)
parser.add_argument(
"--unit_tests_path",
type=str,
default="",
help="path to the json file containing the unit tests and scores",
)
parser.add_argument(
"--cache_size",
type=int,
default=20000,
help="Size of the cache for round robin cache",
)
parser.add_argument(
"--cache_init_path",
type=str,
default="",
help="path to files to use to initialize the cache",
)
# ST beam size
parser.add_argument(
"--st_beam_size", type=str, default="1", help="At ST training: beam size",
)
# ST beam size
parser.add_argument(
"--st_length_penalty",
type=float,
default=0.5,
help="Length penalty for generating elements",
)
# ST test timeout
parser.add_argument(
"--st_test_timeout",
type=int,
default=15,
help="Timeout for the test runner running the unit tests",
)
# Classification parameters
parser.add_argument(
"--n_classes_classif",
type=int,
default=0,
help="Number of classes for classification steps.",
)
parser.add_argument(
"--reload_classifier",
type=str,
default="",
help="Reload pretrained classifier.",
)
# evaluation
parser.add_argument(
"--eval_bleu",
type=bool_flag,
default=False,
help="Evaluate BLEU score during MT training",
)
parser.add_argument(
"--eval_bt_pairs",
type=bool_flag,
default=True,
help="Whether to evaluate on BT language pairs",
)
parser.add_argument(
"--eval_denoising",
type=bool_flag,
default=False,
help="Whether to evaluate the model for denoising",
)
parser.add_argument(
"--eval_subtoken_score",
type=bool_flag,
default=False,
help="Evaluate subtoken score during MT training",
)
parser.add_argument(
"--eval_bleu_test_only",
type=bool_flag,
default=False,
help="Evaluate BLEU score during MT training",
)
parser.add_argument(
"--eval_computation",
type=str,
default="",
help="Check if the generated function is compilable, and if it returns the same output as ground truth.",
)
parser.add_argument(
"--eval_ir_similarity",
type=str,
default="",
help="Check BLEU similarity on the recomputed IR",
)
parser.add_argument(
"--eval_computation_pivot",
type=str,
default="",
help="Check if the generated function is compilable, and if it returns the same output as ground truth.",
)
parser.add_argument(
"--pivot_bpe_model",
type=str,
default="",
help="Check if the generated function is compilable, and if it returns the same output as ground truth.",
)
parser.add_argument(
"--eval_st",
type=bool_flag,
default=False,
help="Whether to evaluate on self-generated tests with evosuite.",
)
parser.add_argument(
"--translation_eval_set",
type=str,
default="GfG",
choices=["GfG", "CodeNet"],
help="Evaluation set for translation. Supported eval sets are GfG and CodeNet right now.",
)
parser.add_argument(
"--generate_hypothesis",
type=bool_flag,
default=False,
help="generate hypothesis for test/valid mono dataset",
)
parser.add_argument(
"--eval_only", type=bool_flag, default=False, help="Only run evaluations"
)
parser.add_argument(
"--eval_beginning",
type=bool_flag,
default=False,
help="Eval at the beginning of training",
)
parser.add_argument(
"--train_only", type=bool_flag, default=False, help="Run no evaluation"
)
parser.add_argument(
"--retry_mistmatching_types",
type=bool_flag,
default=False,
help="Retry with wrapper at eval time when the types do not match",
)
parser.add_argument(
"--n_sentences_eval",
type=int,
default=1500,
help="Number of sentences for evaluation",
)
# debug
parser.add_argument(
"--debug_train",
type=bool_flag,
default=False,
help="Use valid sets for train sets (faster loading)",
)
parser.add_argument(
"--debug_slurm",
type=bool_flag,
default=False,
help="Debug multi-GPU / multi-node within a SLURM job",
)
parser.add_argument("--debug", help="Enable all debug flags", action="store_true")
# multi-gpu / multi-node
parser.add_argument(
"--local_rank", type=int, default=-1, help="Multi-GPU - Local rank"
)
parser.add_argument(
"--master_port",
type=int,
default=-1,
help="Master port (for multi-node SLURM jobs)",
)
parser.add_argument(
"--separate_decoders",
type=bool_flag,
default=False,
help="Use a separate decoder for each language",
)
parser.add_argument(
"--n_share_dec", type=int, default=0, help="Number of decoder layers to share"
)
return parser
def main(params):
# initialize the multi-GPU / multi-node training
init_distributed_mode(params)
# initialize the experiment
logger = initialize_exp(params)
# initialize SLURM signal handler for time limit / pre-emption
init_signal_handler()
# load data
data = load_data(params)
# build model
print_memory(logger, "before build modules")
if params.encoder_only:
model = build_model(params, data["dico"])
else:
encoder, decoder = build_model(params, data["dico"])
print_memory(logger, "before build classifier")
if params.use_classifier:
classifier = build_classifier(params)
else:
classifier = None
# build trainer, reload potential checkpoints / build evaluator
if params.encoder_only:
trainer = SingleTrainer(model, data, params, classifier)
if not params.train_only:
evaluator = SingleEvaluator(trainer, data, params)
else:
trainer = EncDecTrainer(encoder, decoder, data, params)
if not params.train_only:
evaluator = EncDecEvaluator(trainer, data, params)
print_memory(logger, "after building all models")
# evaluation
if params.eval_only or params.eval_beginning:
scores = evaluator.run_all_evals(trainer)
for k, v in scores.items():
if isinstance(v, list):
logger.info("%s -> %s" % (k, json.dumps(["%.2f" % el for el in v])))
else:
logger.info("%s -> %.6f" % (k, v))
logger.info("__log__:%s" % json.dumps(scores))
if params.eval_only:
exit()
# set sampling probabilities for training
set_sampling_probs(data, params)
# language model training
for _ in range(params.max_epoch):
logger.info("============ Starting epoch %i ... ============" % trainer.epoch)
trainer.n_sentences = 0
while trainer.n_sentences < trainer.epoch_size:
show_example = True if trainer.n_sentences == 0 else False
# CLM steps
for lang1, lang2 in shuf_order(params.clm_steps, params):
trainer.clm_step(
lang1, lang2, params.lambda_clm, show_example=show_example
)
# MLM steps (also includes TLM if lang2 is not None)
for lang1, lang2 in shuf_order(params.mlm_steps, params):
trainer.mlm_step(
lang1, lang2, params.lambda_mlm, show_example=show_example
)
# denoising auto-encoder steps
for lang in shuf_order(params.ae_steps):
trainer.ae_step(
lang, None, params.lambda_ae, show_example=show_example,
)
# concatenated denoising auto-encoder steps
for lang1, lang2 in shuf_order(params.tae_steps):
trainer.ae_step(
lang1, lang2, params.lambda_tae, show_example=show_example,
)
# machine translation steps
for lang1, lang2 in shuf_order(params.mt_steps, params):
trainer.mt_step(
lang1, lang2, params.lambda_mt, show_example=show_example,
)
# machine translation using spans steps
for lang1, lang2, span in shuf_order(params.mt_spans_steps, params):
trainer.mt_step(
lang1,
lang2,
params.lambda_mt,
span=span,
show_example=show_example,
)
# deobfuscation step
for lang1, lang2 in shuf_order(params.do_steps):
trainer.dobf_step(
lang1,
lang2,
params.lambda_do,
deobfuscate_p=1 - params.obf_proba,
show_example=show_example,
)
# back-translation steps
for lang1, lang2, lang3 in shuf_order(params.bt_steps):
trainer.bt_step(
lang1,
lang2,
lang3,
params.lambda_bt,
params.bt_sample_temperature,
show_example=show_example,
)
# Classification
for lang1, lang2 in shuf_order(params.classif_steps, params):
trainer.classif_step(
lang1,
lang2,
getattr(params, "lambda_classif_" + "_".join((lang1, lang2))),
)
# Self-Labelling
for lang1, langs2 in shuf_order(params.st_steps):
trainer.st_step(
lang1, langs2, params.lambda_st, show_example=show_example,
)
trainer.iter()
logger.info("============ End of epoch %i ============" % trainer.epoch)
# evaluate perplexity
scores = None
if not params.train_only:
scores = evaluator.run_all_evals(trainer)
# print / JSON log
for k, v in scores.items():
if isinstance(v, list):
logger.info("%s -> %s" % (k, json.dumps(["%.2f" % el for el in v])))
else:
logger.info("%s -> %.6f" % (k, v))
if params.is_master:
logger.info("__log__:%s" % json.dumps(scores))
# end of epoch
if params.validation_metrics != "":
trainer.save_best_model(scores)
trainer.save_periodic()
trainer.end_epoch(scores)