-
Notifications
You must be signed in to change notification settings - Fork 586
/
Copy pathtrain.py
234 lines (198 loc) · 7.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
Copyright (c) Meta Platforms, Inc. and affiliates.
"""
import argparse
import datetime
import os
from os.path import basename
from pathlib import Path
import lightning.pytorch as pl
import torch
from lightning.pytorch.callbacks import (
LearningRateMonitor,
ModelCheckpoint,
Callback,
GradientAccumulationScheduler,
)
from lightning.pytorch.loggers.tensorboard import TensorBoardLogger
from lightning.pytorch.plugins import CheckpointIO
from lightning.pytorch.plugins.environments import SLURMEnvironment
from lightning.pytorch.utilities import rank_zero_only
from sconf import Config
from nougat import NougatDataset
from lightning_module import NougatDataPLModule, NougatModelPLModule
try:
import wandb
from lightning.pytorch.loggers import WandbLogger as Logger
except ModuleNotFoundError:
from lightning.pytorch.loggers.tensorboard import TensorBoardLogger as Logger
import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
class CustomCheckpointIO(CheckpointIO):
"""
A custom class for saving and loading checkpoints with additional functionality.
Args:
`CheckpointIO` (class): The base class for checkpoint I/O operations.
Methods:
`save_checkpoint(checkpoint, path, storage_options=None)`:
Save a checkpoint to the specified path.
`load_checkpoint(path, storage_options=None)`:
Load a checkpoint from the specified path.
`remove_checkpoint(path) -> None`:
Remove a checkpoint from the specified path.
"""
@rank_zero_only
def save_checkpoint(self, checkpoint, path, storage_options=None):
"""
Save a checkpoint to the specified path.
Args:
`checkpoint` (dict): The dictionary containing the checkpoint data.
`path` (str): The path where the checkpoint will be saved.
`storage_options` (dict, optional): Additional storage options.
"""
torch.save(checkpoint, path)
def load_checkpoint(self, path, storage_options=None):
"""
Load a checkpoint from the specified path.
Args:
`path` (str): The path from which the checkpoint will be loaded.
`storage_options` (dict, optional): Additional storage options.
"""
path = Path(path)
if path.is_file():
print("path:", path, path.is_dir())
ckpt = torch.load(path)
if not "state_dict" in ckpt:
ckpt["state_dict"] = {
"model." + key: value
for key, value in torch.load(
path.parent / "pytorch_model.bin"
).items()
}
return ckpt
else:
checkpoint = torch.load(path / "artifacts.ckpt")
state_dict = torch.load(path / "pytorch_model.bin")
checkpoint["state_dict"] = {
"model." + key: value for key, value in state_dict.items()
}
return checkpoint
def remove_checkpoint(self, path) -> None:
return super().remove_checkpoint(path)
class GradNormCallback(Callback):
"""
Logs the gradient norm.
"""
@staticmethod
def gradient_norm(model):
total_norm = 0.0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.detach().data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm**0.5
return total_norm
def on_after_backward(self, trainer, model):
model.log("train/grad_norm", self.gradient_norm(model))
@rank_zero_only
def save_config_file(config, path):
if not Path(path).exists():
os.makedirs(path)
save_path = Path(path) / "config.yaml"
print(config.dumps())
with open(save_path, "w") as f:
f.write(config.dumps(modified_color=None, quote_str=True))
print(f"Config is saved at {save_path}")
def train(config):
"""
Train a Nougat model using the provided configuration.
Args:
`config` (dict): A dictionary containing configuration settings for training.
"""
pl.seed_everything(config.get("seed", 42), workers=True)
model_module = NougatModelPLModule(config)
data_module = NougatDataPLModule(config)
# add datasets to data_module
datasets = {"train": [], "validation": []}
for i, dataset_path in enumerate(config.dataset_paths):
for split in ["train", "validation"]:
datasets[split].append(
NougatDataset(
dataset_path=dataset_path,
nougat_model=model_module.model,
max_length=config.max_length,
split=split,
)
)
data_module.train_datasets = datasets["train"]
data_module.val_datasets = datasets["validation"]
lr_callback = LearningRateMonitor(logging_interval="step")
checkpoint_callback = ModelCheckpoint(
save_last=True,
dirpath=Path(config.result_path) / config.exp_name / config.exp_version,
)
grad_norm_callback = GradNormCallback()
custom_ckpt = CustomCheckpointIO()
if not config.debug:
logger = Logger(config.exp_name, project="Nougat", config=dict(config))
else:
logger = TensorBoardLogger(
save_dir=config.result_path,
name=config.exp_name,
version=config.exp_version,
default_hp_metric=False,
)
trainer = pl.Trainer(
num_nodes=config.get("num_nodes", 1),
devices="auto",
strategy="ddp_find_unused_parameters_true",
accelerator="auto",
# plugins=[SLURMEnvironment(auto_requeue=False)],
max_epochs=config.max_epochs,
max_steps=config.max_steps,
val_check_interval=config.val_check_interval,
check_val_every_n_epoch=config.check_val_every_n_epoch,
limit_val_batches=config.val_batches,
gradient_clip_val=config.gradient_clip_val,
log_every_n_steps=15,
precision="bf16-mixed",
num_sanity_val_steps=0,
logger=logger,
callbacks=[
lr_callback,
grad_norm_callback,
checkpoint_callback,
GradientAccumulationScheduler({0: config.accumulate_grad_batches}),
],
)
trainer.fit(
model_module,
data_module,
ckpt_path=config.get("resume_from_checkpoint_path", None),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--exp_version", type=str, required=False)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--job", type=int, default=None)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
config.debug = args.debug
config.job = args.job
if not config.get("exp_name", False):
config.exp_name = basename(args.config).split(".")[0]
config.exp_version = (
datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
if not args.exp_version
else args.exp_version
)
save_config_file(
config, Path(config.result_path) / config.exp_name / config.exp_version
)
train(config)