-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
155 lines (123 loc) · 4.69 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
parser = argparse.ArgumentParser(description="Visualize EEG dataset")
parser.add_argument("action",
type=str,
choices=["channels", "signal", "signal_fft", "topograph", "topograph_animate"],
help="Action can be signal, signal_fft, topograph, topograph_animate")
parser.add_argument("dataset",
type=str,
help="Path to .csv or .parquet dataset file")
parser.add_argument("--id",
type=str,
help="EEG recording ID")
parser.add_argument("--trial",
type=int,
default=0,
help="EEG trial number")
parser.add_argument("--channel",
type=str,
default="AF1,F7",
help="EEG channel names, separated by comma (e.g. AF1,F7)")
parser.add_argument("--vspace",
type=int,
default=50,
help="Vertical spacing when plotting EEG recording")
# early parsing arguments
args = None
if __name__ == "__main__":
# parse arguments
args = vars(parser.parse_args())
# imports
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from termcolor import colored
from sibyl import plots
from sibyl.util import filesystem as fs
def visualize_channels(df: pd.DataFrame):
print("Available channels:")
print(df.columns.values[5:])
def visualize_signal(df: pd.DataFrame, vspace: int):
values = df.values
channels = df.columns.values
_, ax = plt.subplots()
plots.plot_eeg(values, channels, ax, vspace=vspace)
plt.show()
def visualize_signal_fft(df: pd.DataFrame):
_, ax = plt.subplots()
plots.plot_eeg_fft(df, ax)
plt.show()
def visualize_topograph(df: pd.DataFrame):
ch_data = plots.reshape_data_topograph(df)
pwrs, _ = plots.get_psds(ch_data)
fig, ax = plt.subplots(figsize=(10,8))
plots.plot_topomap(pwrs, ax, fig)
plt.show()
def visualize_topograph_animate(df: pd.DataFrame):
ch_data = plots.reshape_data_topograph(df)
plt.ion()
fig, ax = plt.subplots(figsize=(10,8))
chunk_data = np.array_split(ch_data, 10, axis=1)
for chunk in chunk_data:
pwrs, _ = plots.get_psds(chunk)
ax.clear()
plots.plot_topomap(pwrs, ax, fig, draw_cbar=False)
fig.canvas.draw()
fig.canvas.flush_events()
time.sleep(0.1)
def query_subset(df: pd.DataFrame, trial: int, id: str):
return df.loc[(df["trial"] == trial) & (df["id"] == id)]
def load_dataset(path: str):
if ".csv" in path:
return pd.read_csv(path)
else:
return pd.read_parquet(path)
# main app entry point
if __name__ == "__main__":
# validations
if not fs.is_file_extension(args["dataset"], [".csv", ".parquet"]):
print(colored("Dataset is not in .csv or .parquet extension", "red"))
exit()
if not fs.is_file_exists(args["dataset"]) and not fs.is_directory_exists(args["dataset"]) :
print(colored("Dataset file does not exists", "red"))
exit()
if args["id"] is None and args["action"] != "channels":
print(colored("ID must be specified", "red"))
exit()
# load dataset
print(colored("Loading dataset...", "cyan"))
df: pd.DataFrame = load_dataset(args["dataset"])
# get available channels
if args["action"] == "channels":
visualize_channels(df)
# EEG signal time series
elif args["action"] == "signal":
columns = args["channel"].split(",")
chunk_df = query_subset(df, args["trial"], args["id"])[columns]
visualize_signal(chunk_df, args["vspace"])
# EEG signal time series with FFT filter
elif args["action"] == "signal_fft":
# validation
if "," in args["channel"]:
print(colored("FFT plot only available for a single channel", "red"))
exit()
chunk_df = query_subset(df, args["trial"], args["id"])[args["channel"]].values
visualize_signal_fft(chunk_df)
# EEG topograph
elif args["action"] == "topograph":
chunk_df = query_subset(df, args["trial"], args["id"])
if len(chunk_df) == 0:
print(colored("No data found using the specified query", "red"))
exit()
visualize_topograph(chunk_df)
# EEG topograph with animation
elif args["action"] == "topograph_animate":
chunk_df = query_subset(df, args["trial"], args["id"])
if len(chunk_df) == 0:
print(colored("No data found using the specified query", "red"))
exit()
visualize_topograph_animate(chunk_df)
# out of range
else:
print("Unknown action, valid values are: download, transform")