pip install --upgrade fastlabel
Python version 3.8 or greater is required
Configure API Key in environment variable.
export FASTLABEL_ACCESS_TOKEN="YOUR_ACCESS_TOKEN"
Initialize fastlabel client.
import fastlabel
client = fastlabel.Client()
API is allowed to call 10000 times per 10 minutes. If you create/delete a large size of tasks, please wait a second for every requests.
Supported following project types:
- Image - Bounding Box
- Image - Polygon
- Image - Keypoint
- Image - Line
- Image - Segmentation
- Image - Pose Estimation
- Image - All
Create a new task.
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./sample.jpg"
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./sample.jpg",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[{
"type": "bbox",
"value": "annotation-value",
"attributes": [
{
"key": "attribute-key",
"value": "attribute-value"
}
],
"points": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
]
}]
)
- You can upload up to a size of 20 MB.
Create a new task by integrated image. (Project storage setting should be configured in advance.)
task_id = client.create_integrated_image_task(
project="YOUR_PROJECT_SLUG",
file_path="<integrated-storage-dir>/sample.jpg",
storage_type="gcp",
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
file_path="<integrated-storage-dir>/sample.jpg",
storage_type="gcp",
annotations=[{
"type": "bbox",
"value": "annotation-value",
"attributes": [
{
"key": "attribute-key",
"value": "attribute-value"
}
],
"points": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
]
}]
)
- You can upload up to a size of 20 MB.
Find a single task.
task = client.find_image_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_image_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG")
- Filter and Get tasks. (Up to 1000 tasks)
tasks = client.get_image_tasks(
project="YOUR_PROJECT_SLUG",
status="approved", # status can be 'pending', 'registered', 'completed', 'skipped', 'reviewed' 'sent_back', 'approved', 'declined'
tags=["tag1", "tag2"] # up to 10 tags
)
Get a large size of tasks. (Over 1000 tasks)
import time
# Iterate pages until new tasks are empty.
all_tasks = []
offset = None
while True:
time.sleep(1)
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG", offset=offset)
all_tasks.extend(tasks)
if len(tasks) > 0:
offset = len(all_tasks) # Set the offset
else:
break
Please wait a second before sending another requests!
Update a single task.
task_id = client.update_image_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[
{
"type": "bbox",
"value": "cat"
"attributes": [
{ "key": "kind", "value": "Scottish field" }
],
"points": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
]
}
],
# pass annotation indexes to update
relations=[
{
"startIndex": 1,
"endIndex": 0,
},
{
"startIndex": 2,
"endIndex": 0
}
]
)
Example of a single image task object
{
"id": "YOUR_TASK_ID",
"name": "cat.jpg",
"width": 100, # image width
"height": 100, # image height
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"attributes": [
{ "key": "kind", "name": "Kind", "type": "text", "value": "Scottish field" }
],
"color": "#b36d18",
"points": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
],
"rotation": 0,
"title": "Cat",
"type": "bbox",
"value": "cat"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Example when the project type is Image - Pose Estimation
{
"id": "YOUR_TASK_ID",
"name": "person.jpg",
"width": 255, # image width
"height": 255, # image height
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations":[
{
"type":"pose_estimation",
"title":"jesture",
"value":"jesture",
"color":"#10c414",
"attributes": [],
"keypoints":[
{
"name":"頭",
"key":"head",
"value":[
102.59, # x
23.04, # y
1 # 0:invisible, 1:visible
],
"edges":[
"right_shoulder",
"left_shoulder"
]
},
{
"name":"右肩",
"key":"right_shoulder",
"value":[
186.69,
114.11,
1
],
"edges":[
"head"
]
},
{
"name":"左肩",
"key":"left_shoulder",
"value":[
37.23,
109.29,
1
],
"edges":[
"head"
]
}
]
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Get tasks and export images with annotations. Only support the following image extension.
- jpeg
- jpg
- png
- tif
- tiff
- bmp
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG")
client.export_image_with_annotations(
tasks=tasks, image_dir="IMAGE_DIR", output_dir="OUTPUT_DIR"
)
This function is alpha version. It is subject to major changes in the future.
Integration is possible only when tasks are registered from the objects divided by the dataset. Only bbox and polygon annotation types are supported.
In the case of a task divided under the following conditions.
- Dataset slug:
image
- Object name:
cat.jpg
- Split count:
3×3
Objects are registered in the data set in the following form.
- image/cat/1.jpg
- image/cat/2.jpg
- image/cat/3.jpg
- (omit)
- image/cat/9.jpg
The annotations at the edges of the image are combined. However, annotations with a maximum length of 300px may not work.
In this case, SPLIT_IMAGE_TASK_NAME_PREFIX specifies image/cat
.
task = client.find_integrated_image_task_by_prefix(
project="YOUR_PROJECT_SLUG",
prefix="SPLIT_IMAGE_TASK_NAME_PREFIX",
)
Example of a integrated image task object
{
'name': 'image/cat.jpg',
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"confidenceScore"; -1,
"keypoints": [],
"points": [200,200,300,400],
"rotation": 0,
"title": "Bird",
"type": "polygon",
"value": "bird"
}
],
}
Supported following project types:
- Image - Classification
Create a new task.
task_id = client.create_image_classification_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./sample.jpg",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
- You can upload up to a size of 20 MB.
Create a new classification task by integrated image. (Project storage setting should be configured in advance.)
task_id = client.create_integrated_image_classification_task(
project="YOUR_PROJECT_SLUG",
file_path="<integrated-storage-dir>/sample.jpg",
storage_type="gcp",
)
Find a single task.
task = client.find_image_classification_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_image_classification_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_image_classification_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_image_classification_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
Example of a single image classification task object
{
"id": "YOUR_TASK_ID",
"name": "cat.jpg",
"width": 100, # image width
"height": 100, # image height
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"attributes": [
{
"key": "kind",
"name": "Kind",
"type": "text",
"value": "Scottish field"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Multi Image - Classification
Create a new task.
task = client.create_multi_image_classification_task(
project="YOUR_PROJECT_SLUG",
name="sample",
folder_path="./sample",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"type": "text",
"key": "attribute-key",
"value": "attribute-value"
}
]
)
- You can upload up to a size of 20 MB.
- You can upload up to a total size of 2 GB.
- You can upload up to 6 files in total.
Find a single task.
task = client.find_multi_image_classification_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_multi_image_classification_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks.
tasks = client.get_multi_image_classification_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_multi_image_classification_task(
task_id="YOUR_TASK_ID",
status="approved",
assignee="USER_SLUG",
tags=["tag1", "tag2"],
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"type": "text",
"key": "attribute-key",
"value": "attribute-value"
}
]
)
Example of a single task object
{
"id": "YOUR_TASK_ID",
"name": "sample",
"contents": [
{
"name": "content-name-1",
"url": "content-url-1",
"width": 100,
"height": 100,
},
{
"name": "content-name-2",
"url": "content-url-2",
"width": 100,
"height": 100,
}
],
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"attributes": [
{
"type": "text",
"key": "attribute-key-1",
"value": "attribute-value-1"
},
{
"type": "text",
"key": "attribute-key-2",
"value": "attribute-value-2"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Sequential Image - Bounding Box
- Sequential Image - Polygon
- Sequential Image - Keypoint
- Sequential Image - Line
- Sequential Image - Segmentation
Create a new task.
task = client.create_sequential_image_task(
project="YOUR_PROJECT_SLUG",
name="sample",
folder_path="./sample",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[{
"type": "segmentation",
"value": "annotation-value",
"attributes": [
{
"key": "attribute-key",
"value": "attribute-value"
}
],
"content": "01.jpg",
"points": [[[
100,
100,
300,
100,
300,
300,
100,
300,
100,
100
]]] # clockwise rotation
}]
)
- You can upload up to a size of 20 MB.
- You can upload up to a total size of 512 MB.
- You can upload up to 250 files in total.
Find a single task.
task = client.find_sequential_image_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_sequential_image_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks.
tasks = client.get_sequential_image_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_sequential_image_task(
task_id="YOUR_TASK_ID",
status="approved",
assignee="USER_SLUG",
tags=["tag1", "tag2"],
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[
{
"type": "bbox",
"value": "cat",
"content": "cat1.jpg",
"attributes": [
{ "key": "key", "value": "value1" }
],
"points": [990, 560, 980, 550]
}
]
)
Example of a single task object
{
"id": "YOUR_TASK_ID",
"name": "cat.jpg",
"contents": [
{
"name": "content-name",
"url": "content-url",
"width": 100,
"height": 100,
}
],
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"content": "content-name"
"attributes": [],
"color": "#b36d18",
"points": [[[
100,
100,
300,
100,
300,
300,
100,
300,
100,
100
]]]
"title": "Cat",
"type": "bbox",
"value": "cat"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Video - Bounding Box
- Video - Keypoint
- Video - Line
Create a new task.
task_id = client.create_video_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp4",
file_path="./sample.mp4"
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_video_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp4",
file_path="./sample.mp4",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[{
"type": "bbox",
"value": "person",
"points": {
"1": { # number of frame
"value": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
],
# Make sure to set `autogenerated` False for the first and last frame. "1" and "3" frames in this case.
# Otherwise, annotation is auto-completed for rest of frames when you edit.
"autogenerated": False
},
"2": {
"value": [
110,
110,
220,
220
],
"autogenerated": True
},
"3": {
"value": [
120,
120,
240,
240
],
"autogenerated": False
}
}
}]
)
- You can upload up to a size of 250 MB.
- You can upload only videos with H.264 encoding.
- You can upload only MP4 file format.
Find a single task.
task = client.find_video_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_video_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 10 tasks)
tasks = client.get_video_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_video_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[{
"type": "bbox",
"value": "bird",
"points": {
"1": {
"value": [
100,
100,
200,
200
],
"autogenerated": False
},
"2": {
"value": [
110,
110,
220,
220
],
"autogenerated": True
},
"3": {
"value": [
120,
120,
240,
240
],
"autogenerated": False
}
}
}]
)
This function is alpha version. It is subject to major changes in the future.
Integration is possible only when tasks are registered from the objects divided by the dataset.
In the case of a task divided under the following conditions.
- Dataset slug:
video
- Object name:
cat.mp4
- Split count:
3
Objects are registered in the data set in the following form.
- video/cat/1.mp4
- video/cat/2.mp4
- video/cat/3.mp4
In this case, SPLIT_VIDEO_TASK_NAME_PREFIX specifies video/cat
.
task = client.find_integrated_video_task_by_prefix(
project="YOUR_PROJECT_SLUG",
prefix="SPLIT_VIDEO_TASK_NAME_PREFIX",
)
Example of a single vide task object
{
"id": "YOUR_TASK_ID",
"name": "cat.jpg",
"width": 100, # image width
"height": 100, # image height
"fps": 30.0, # frame per seconds
"frameCount": 480, # total frame count of video
"duration": 16.0, # total duration of video
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"points": {
"1": { # number of frame
"value": [
100, # top-left x
100, # top-left y
200, # bottom-right x
200 # bottom-right y
],
"autogenerated": False # False when annotated manually. True when auto-generated by system.
},
"2": {
"value": [
110,
110,
220,
220
],
"autogenerated": True
},
"3": {
"value": [
120,
120,
240,
240
],
"autogenerated": False
}
},
"title": "Cat",
"type": "bbox",
"value": "cat"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Video - Classification (Single)
Create a new task.
task_id = client.create_video_classification_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp4",
file_path="./sample.mp4",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
- You can upload up to a size of 250 MB.
Find a single task.
task = client.find_video_classification_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_video_classification_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_video_classification_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_video_classification_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
Supported following project types:
- Text - NER
Create a new task.
task_id = client.create_text_task(
project="YOUR_PROJECT_SLUG",
name="sample.txt",
file_path="./sample.txt"
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_text_task(
project="YOUR_PROJECT_SLUG",
name="sample.txt",
file_path="./sample.txt",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[{
"type": "ner",
"value": "person",
"start": 0,
"end": 10,
"text": "1234567890"
}]
)
- You can upload up to a size of 2 MB.
Find a single task.
task = client.find_text_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_text_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 10 tasks)
tasks = client.get_text_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_text_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[{
"type": "bbox",
"value": "bird",
"start": 0,
"end": 10,
"text": "0123456789"
}]
)
Example of a single text task object
{
"id": "YOUR_TASK_ID",
"name": "cat.txt",
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"text": "0123456789",
"start": 0,
"end": 10,
"title": "Cat",
"type": "ner",
"value": "cat"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Text - Classification (Single)
Create a new task.
task_id = client.create_text_classification_task(
project="YOUR_PROJECT_SLUG",
name="sample.txt",
file_path="./sample.txt",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
- You can upload up to a size of 2 MB.
Find a single task.
task = client.find_text_classification_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_text_classification_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_text_classification_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_text_classification_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
Supported following project types:
- Audio - Segmentation
Create a new task.
task_id = client.create_audio_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp3",
file_path="./sample.mp3"
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_audio_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp3",
file_path="./sample.mp3",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[{
"type": "segmentation",
"value": "person",
"start": 0.4,
"end": 0.5
}]
)
- You can upload up to a size of 120 MB.
Find a single task.
task = client.find_audio_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_audio_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 10 tasks)
tasks = client.get_audio_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_audio_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[{
"type": "segmentation",
"value": "bird",
"start": 0.4,
"end": 0.5
}]
)
Example of a single audio task object
{
"id": "YOUR_TASK_ID",
"name": "cat.mp3",
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"start": 0.4,
"end": 0.5,
"title": "Bird",
"type": "segmentation",
"value": "bird"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
This function is alpha version. It is subject to major changes in the future.
Integration is possible only when tasks are registered from the objects divided by the dataset.
In the case of a task divided under the following conditions.
- Dataset slug:
audio
- Object name:
voice.mp3
- Split count:
3
Objects are registered in the data set in the following form.
- audio/voice/1.mp3
- audio/voice/2.mp3
- audio/voice/3.mp3
Annotations are combined when the end point specified in the annotation is the end time of the task and the start point of the next task is 0 seconds.
In this case, SPLIT_AUDIO_TASK_NAME_PREFIX specifies audio/voice
.
task = client.find_integrated_audio_task_by_prefix(
project="YOUR_PROJECT_SLUG",
prefix="SPLIT_AUDIO_TASK_NAME_PREFIX",
)
Example of a integrated audio task object
{
'name': 'audio/voice.mp3',
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"start": 0.4,
"end": 0.5,
"title": "Bird",
"type": "segmentation",
"value": "bird"
}
],
}
Supported following project types:
- Audio - Classification (Single)
Create a new task.
task_id = client.create_audio_classification_task(
project="YOUR_PROJECT_SLUG",
name="sample.mp3",
file_path="./sample.mp3",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
- You can upload up to a size of 120 MB.
Find a single task.
task = client.find_audio_classification_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_audio_classification_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_audio_classification_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_audio_classification_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
attributes=[
{
"key": "attribute-key",
"value": "attribute-value"
}
],
)
Supported following project types:
- PCD - Cuboid
- PCD - Segmentation
Create a new task.
task_id = client.create_pcd_task(
project="YOUR_PROJECT_SLUG",
name="sample.pcd",
file_path="./sample.pcd"
)
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
Annotation Type: cuboid
task_id = client.create_pcd_task(
project="YOUR_PROJECT_SLUG",
name="sample.pcd",
file_path="./sample.pcd",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[
{
"type": "cuboid",
"value": "car",
"points": [ # For cuboid, it is a 9-digit number.
1, # Coordinate X
2, # Coordinate Y
3, # Coordinate Z
1, # Rotation x
1, # Rotation Y
1, # Rotation Z
2, # Length X
2, # Length Y
2 # Length Z
],
}
],
)
Annotation Type: segmentation
task_id = client.create_pcd_task(
project="YOUR_PROJECT_SLUG",
name="sample.pcd",
file_path="./sample.pcd",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[
{
"type": "segmentation",
"value": "car",
"points": [1, 2, 3, 4, 5], # For segmentation, it is an arbitrary numeric array.
}
],
)
- You can upload up to a size of 30 MB.
Find a single task.
task = client.find_pcd_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_pcd_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_pcd_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_pcd_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[
{
"type": "cuboid",
"value": "car",
"points": [ # For cuboid, it is a 9-digit number.
1, # Coordinate X
2, # Coordinate Y
3, # Coordinate Z
1, # Rotation x
1, # Rotation Y
1, # Rotation Z
2, # Length X
2, # Length Y
2 # Length Z
],
}
],
)
Example of a single PCD task object
{
"id": "YOUR_TASK_ID",
"name": "sample.pcd",
"url": "YOUR_TASK_URL",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"tags": ["tag1", "tag2"],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"approver": "APPROVER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"externalApprover": "EXTERNAL_APPROVER_NAME",
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"title": "Car",
"type": "segmentation",
"value": "car",
"points": [1, 2, 3, 1, 1, 1, 2, 2, 2],
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Supported following project types:
- Sequential PCD - Cuboid
Create a new task.
task_id = client.create_sequential_pcd_task(
project="YOUR_PROJECT_SLUG",
name="drive_record",
folder_path="./drive_record/", # Path where sequence PCD files are directory
)
The order of frames is determined by the ascending order of PCD file names located in the specified directory. File names are optional, but we recommend naming them in a way that makes the order easy to understand.
./drive_record/
├── 0001.pcd => frame 1
├── 0002.pcd => frame 2
...
└── xxxx.pcd => frame n
Create a new task with pre-defined annotations. (Class should be configured on your project in advance)
task_id = client.create_sequential_pcd_task(
project="YOUR_PROJECT_SLUG",
name="drive_record",
folder_path="./drive_record/",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
annotations=[
{
"type": "cuboid", # annotation class type
"value": "human", # annotation class value
"points": {
"1": { # number of frame
"value": [ # For cuboid, it is a 9-digit number.
1, # Coordinate X
2, # Coordinate Y
3, # Coordinate Z
1, # Rotation x
1, # Rotation Y
1, # Rotation Z
2, # Length X
2, # Length Y
2 # Length Z
],
# Make sure to set `autogenerated` False for the first and last frame. "1" and "3" frames in this case.
# Otherwise, annotation is auto-completed for rest of frames when you edit.
"autogenerated": False,
},
"2": {
"value": [
11,
12,
13,
11,
11,
11,
12,
12,
12
],
"autogenerated": True,
},
"3": {
"value": [
21,
22,
23,
21,
21,
21,
22,
22,
22
],
"autogenerated": False,
},
},
},
]
)
You can upload up to a size of 30 MB per file.
Find a single task.
task = client.find_sequential_pcd_task(task_id="YOUR_TASK_ID")
Find a single task by name.
task = client.find_sequential_pcd_task(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 10 tasks)
tasks = client.get_sequential_pcd_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_sequential_pcd_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
assignee="USER_SLUG",
tags=["tag1", "tag2"],
annotations=[
{
"type": "cuboid",
"value": "human",
"points": {
"1": {
"value": [
1,
2,
3,
1,
1,
1,
2,
2,
2
],
"autogenerated": False,
},
"2": {
"value": [
11,
12,
13,
11,
11,
11,
12,
12,
12
],
"autogenerated": False,
},
},
},
]
)
Example of a single Sequential PCD task object
{
"id": "YOUR_TASK_ID",
"name": "YOUR_TASK_NAME",
"status": "registered",
"externalStatus": "registered",
"priority": 10,
"annotations": [
{
"id": "YOUR_TASK_ANNOTATION_ID",
"type": "cuboid",
"title": "human",
"value": "human",
"color": "#4bdd62",
"attributes": [],
"points": {
"1": {
"value": [2.61, 5.07, 0, 0, 0, 0, 2, 2, 2],
"autogenerated": False,
},
"2": {
"value": [2.61, 5.07, 0, 0, 0, 0, 2, 2, 2],
"autogenerated": True,
},
"3": {
"value": [2.61, 5.07, 0, 0, 0, 0, 2, 2, 2],
"autogenerated": False,
},
},
},
{
"id": "YOUR_TASK_ANNOTATION_ID",
"type": "cuboid",
"title": "building",
"value": "building",
"color": "#223543",
"attributes": [],
"points": {
"1": {
"value": [2.8, -8.64, 0.15, 0, 0, 0, 4.45, 4.2, 2],
"autogenerated": False,
},
"2": {
"value": [2.8, -8.64, 0.15, 0, 0, 0, 4.45, 4.2, 2],
"autogenerated": True,
},
"3": {
"value": [2.8, -8.64, 0.15, 0, 0, 0, 4.45, 4.2, 2],
"autogenerated": True,
},
"4": {
"value": [2.8, -8.64, 0.15, 0, 0, 0, 4.45, 4.2, 2],
"autogenerated": True,
},
"5": {
"value": [2.8, -8.64, 0.15, 0, 0, 0, 4.45, 4.2, 2],
"autogenerated": True,
},
},
},
],
"tags": [],
"assignee": None,
"reviewer": None,
"approver": None,
"externalAssignee": None,
"externalReviewer": None,
"externalApprover": None,
"createdAt": "2023-03-24T08:39:08.524Z",
"updatedAt": "2023-03-24T08:39:08.524Z",
}
Supported following project types:
- DICOM -Bounding Box
Create a new task. You should receive task import history status Find Task Import History. Once you receive the status completed, you can get the task.
history = client.create_dicom_task(
project="YOUR_PROJECT_SLUG",
file_path="./sample.zip"
)
- You can upload up to a size of 2 GB per file.
Find a single task.
task = client.find_dicom_task(task_id="YOUR_TASK_ID")
Find a single task by name.
tasks = client.find_dicom_task_by_name(project="YOUR_PROJECT_SLUG", task_name="YOUR_TASK_NAME")
Get tasks. (Up to 1000 tasks)
tasks = client.get_dicom_tasks(project="YOUR_PROJECT_SLUG")
Update a single task.
task_id = client.update_dicom_task(
task_id="YOUR_TASK_ID",
status="approved",
assignee="USER_SLUG",
tags=["tag1", "tag2"]
)
Example of a single dicom task object
{
"id": "YOUR_TASK_ID",
"name": "dicom.zip",
"url": "YOUR_TASK_URL",
'height': 512,
'width': 512,
"status": "registered",
"externalStatus": "registered",
"tags": [],
"assignee": "ASSIGNEE_NAME",
"reviewer": "REVIEWER_NAME",
"externalAssignee": "EXTERNAL_ASSIGNEE_NAME",
"externalReviewer": "EXTERNAL_REVIEWER_NAME",
"annotations": [
{
"attributes": [],
"color": "#b36d18",
"contentId": "CONTENT_ID"
"points": [100, 200, 100, 200],
"title": "Heart",
"type": "bbox",
"value": "heart"
}
],
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
APIs for update and delete and count are same over all tasks.
Update a single task status, tags and assignee.
task_id = client.update_task(
task_id="YOUR_TASK_ID",
status="approved",
priority=10, # (optional) none: 0, low: 10, medium: 20, high: 30
tags=["tag1", "tag2"],
assignee="USER_SLUG"
)
Delete a single task.
client.delete_task(task_id="YOUR_TASK_ID")
Delete annotations in a task.
client.delete_task_annotations(task_id="YOUR_TASK_ID")
id_name_map = client.get_task_id_name_map(project="YOUR_PROJECT_SLUG")
task_count = client.count_tasks(
project="YOUR_PROJECT_SLUG",
status="approved", # status can be 'pending', 'registered', 'completed', 'skipped', 'reviewed' 'sent_back', 'approved', 'declined'
tags=["tag1", "tag2"] # up to 10 tags
)
Task creation from S3.
-
Support project
- Image
- Video
- Audio
- Text
-
To use it, you need to set the contents of the following link. https://docs.fastlabel.ai/docs/integrations-aws-s3
-
Setup AWS S3 properties
status = client.update_aws_s3_storage(
project="YOUR_PROJECT_SLUG",
bucket_name="S3_BUCKET_NAME",
bucket_region="S3_REGIONS",
)
- Run create task from AWS S3
history = client.create_task_from_aws_s3(
project="YOUR_PROJECT_SLUG",
)
- Get AWS S3 import status
history = client.get_aws_s3_import_status_by_project(
project="YOUR_PROJECT_SLUG",
)
Find a single history.
history = client.find_history(history_id="YOUR_HISTORY_ID")
histories = client.get_histories(project="YOUR_PROJECT_SLUG")
Example of a single history object
{
"id": "YOUR_HISTORY_ID",
"storageType": "zip",
"status": "running",
"createdAt": "2021-02-22T11:25:27.158Z",
"updatedAt": "2021-02-22T11:25:27.158Z"
}
Processing of various types of appendix information is supported.
Import camera calibration and image appendix information for tasks in pcd and sequential pcd projects.
client.import_appendix_file(project="YOUR_PROJECT_SLUG", file_path="ZIP_FILE_PATH")
The folder structure inside the ZIP file is as follows
.
└── task_name
├── content_name_1.pcd
│ ├── 000001.png
│ └── 000001.yaml
└── content_name_2.pcd
├── 000002.png
├── 000002.yaml
├── 000003.png
└── 000003.yaml
appendix_data = client.get_appendix_data(
project="YOUR_PROJECT_SLUG"
# option param is filter task
status=None,
external_status=None,
tags=None,
task_name=None,
offset=None,
limit=10000,
)
Result data
[{
id: uuid
url: image file download url
format: calibration format (yml or kitti or None)
imageFileName: {task_name}/{content_name}/{image_file_name}
calibrationFileName: {task_name}/{content_name}/{yml_or_txt_fileName} or None
calibration: Camera calibration data to write to the calibration file
},...]
Create a new annotation.
annotation_id = client.create_annotation(
project="YOUR_PROJECT_SLUG", type="bbox", value="cat", title="Cat")
Create a new annotation with color and attributes.
attributes = [
{
"type": "text",
"name": "Kind",
"key": "kind"
},
{
"type": "select",
"name": "Size",
"key": "size",
"options": [ # select, radio and checkbox type requires options
{
"title": "Large",
"value": "large"
},
{
"title": "Small",
"value": "small"
},
]
},
]
annotation_id = client.create_annotation(
project="YOUR_PROJECT_SLUG", type="bbox", value="cat", title="Cat", color="#FF0000", attributes=attributes)
Create a new classification annotation.
annotation_id = client.create_classification_annotation(
project="YOUR_PROJECT_SLUG", attributes=attributes)
Find an annotation.
annotation = client.find_annotation(annotation_id="YOUR_ANNOTATION_ID")
Find an annotation by value.
annotation = client.find_annotation_by_value(project="YOUR_PROJECT_SLUG", value="cat")
Find an annotation by value in classification project.
annotation = client.find_annotation_by_value(
project="YOUR_PROJECT_SLUG", value="classification") # "classification" is fixed value
Get annotations. (Up to 1000 annotations)
annotations = client.get_annotations(project="YOUR_PROJECT_SLUG")
Example of an annotation object
{
"id": "YOUR_ANNOTATION_ID",
"type": "bbox",
"value": "cat",
"title": "Cat",
"color": "#FF0000",
"order": 1,
"vertex": 0,
"attributes": [
{
"id": "YOUR_ATTRIBUTE_ID",
"key": "kind",
"name": "Kind",
"options": [],
"order": 1,
"type": "text",
"value": ""
},
{
"id": "YOUR_ATTRIBUTE_ID",
"key": "size",
"name": "Size",
"options": [
{"title": "Large", "value": "large"},
{"title": "Small", "value": "small"}
],
"order": 2,
"type": "select",
"value": ""
}
],
"createdAt": "2021-05-25T05:36:50.459Z",
"updatedAt": "2021-05-25T05:36:50.459Z"
}
Example when the annotation type is Pose Estimation
{
"id":"b12c81c3-ddec-4f98-b41b-cef7f77d26a4",
"type":"pose_estimation",
"title":"jesture",
"value":"jesture",
"color":"#10c414",
"order":1,
"attributes": [],
"keypoints":[
{
"id":"b03ea998-a2f1-4733-b7e9-78cdf73bd38a",
"name":"頭",
"key":"head",
"color":"#0033CC",
"edges":[
"195f5852-c516-498b-b392-24513ce3ea67",
"06b5c968-1786-4d75-a719-951e915e5557"
],
"value": []
},
{
"id":"195f5852-c516-498b-b392-24513ce3ea67",
"name":"右肩",
"key":"right_shoulder",
"color":"#0033CC",
"edges":[
"b03ea998-a2f1-4733-b7e9-78cdf73bd38a"
],
"value": []
},
{
"id":"06b5c968-1786-4d75-a719-951e915e5557",
"name":"左肩",
"key":"left_shoulder",
"color":"#0033CC",
"edges":[
"b03ea998-a2f1-4733-b7e9-78cdf73bd38a"
],
"value": []
}
],
"createdAt":"2021-11-21T09:59:46.714Z",
"updatedAt":"2021-11-21T09:59:46.714Z"
}
Update an annotation.
annotation_id = client.update_annotation(
annotation_id="YOUR_ANNOTATION_ID", value="cat2", title="Cat2", color="#FF0000")
Update an annotation with attributes.
attributes = [
{
"id": "YOUR_ATTRIBUTE_ID", # check by sdk get methods
"type": "text",
"name": "Kind2",
"key": "kind2"
},
{
"id": "YOUR_ATTRIBUTE_ID",
"type": "select",
"name": "Size2",
"key": "size2",
"options": [
{
"title": "Large2",
"value": "large2"
},
{
"title": "Small2",
"value": "small2"
},
]
},
]
annotation_id = client.update_annotation(
annotation_id="YOUR_ANNOTATION_ID", value="cat2", title="Cat2", color="#FF0000", attributes=attributes)
Update a classification annotation.
annotation_id = client.update_classification_annotation(
project="YOUR_PROJECT_SLUG", attributes=attributes)
Delete an annotation.
client.delete_annotation(annotation_id="YOUR_ANNOTATION_ID")
Create a new project.
project_id = client.create_project(
type="image_bbox", name="ImageNet", slug="image-net")
Find a project.
project = client.find_project(project_id="YOUR_PROJECT_ID")
Find a project by slug.
project = client.find_project_by_slug(slug="YOUR_PROJECT_SLUG")
Get projects. (Up to 1000 projects)
projects = client.get_projects()
Example of a project object
{
"id": "YOUR_PROJECT_ID",
"type": "image_bbox",
"slug": "YOUR_PROJECT_SLUG",
"name": "YOUR_PROJECT_NAME",
"isPixel": False,
"jobSize": 10,
"status": "active",
"createdAt": "2021-04-20T03:20:41.427Z",
"updatedAt": "2021-04-20T03:20:41.427Z",
}
Update a project.
project_id = client.update_project(
project_id="YOUR_PROJECT_ID", name="NewImageNet", slug="new-image-net", job_size=20)
Delete a project.
client.delete_project(project_id="YOUR_PROJECT_ID")
Copy a project.
project_id = client.copy_project(project_id="YOUR_PROJECT_ID")
Get tags. (Up to 1000 tags)
keyword are search terms in the tag name (Optional). offset is the starting position number to fetch (Optional). limit is the max number to fetch (Optional).
If you need to fetch more than 1000 tags, please loop this method using offset and limit. In the sample code below, you can fetch 1000 tags starting from the 2001st position.
projects = client.get_tags(
project="YOUR_PROJECT_SLUG",
keyword="dog", # (Optional)
offset=2000, # (Optional)
limit=1000, # (Optional. Default is 100.)
)
Example of tags object
[
{
"id": "YOUR_TAG_ID",
"name": "YOUR_TAG_NAME",
"order": 1,
"createdAt": "2023-08-14T11: 32: 36.462Z",
"updatedAt": "2023-08-14T11: 32: 36.462Z"
}
]
Delete tags.
client.delete_tags(
tag_ids=[
"YOUR_TAG_ID_1",
"YOUR_TAG_ID_2",
],
)
Create a new dataset.
dataset = client.create_dataset(
name="object-detection", # Only lowercase alphanumeric characters + hyphen is available
tags=["cat", "dog"], # max 5 tags per dataset.
visibility="workspace", # visibility can be 'workspace' or 'public' or 'organization'
)
See API docs for details.
{
'id': 'YOUR_DATASET_ID',
'name': 'object-detection',
'tags': ['cat', 'dog'],
'visibility': 'workspace',
'license': 'The MIT License',
'createdAt': '2022-10-31T02:20:00.248Z',
'updatedAt': '2022-10-31T02:20:00.248Z'
}
Find a single dataset.
dataset = client.find_dataset(dataset_id="YOUR_DATASET_ID")
Success response is the same as when created.
Get all datasets in the workspace. (Up to 1000 tasks)
datasets = client.get_datasets()
The success response is the same as when created, but it is an array.
You can filter by keywords and visibility, tags.
datasets = client.get_datasets(
keyword="dog",
tags=["cat", "dog"], # max 5 tags per dataset.
visibility="workspace", # visibility can be 'workspace' or 'public' or 'organization'.
)
If you wish to retrieve more than 1000 datasets, please refer to the Task sample code.
Update a single dataset.
dataset = client.update_dataset(
dataset_id="YOUR_DATASET_ID", name="object-detection", tags=["cat", "dog"]
)
Success response is the same as when created.
Delete a single dataset.
client.delete_dataset(dataset_id="YOUR_DATASET_ID")
Create object in the dataset.
The types of objects that can be created are "image", "video", and "audio". There are type-specific methods. but they can be used in the same way.
Created object are automatically assigned to the "latest" dataset version.
dataset_object = client.create_dataset_object(
dataset="YOUR_DATASET_NAME",
name="brushwood_dog.jpg",
file_path="./brushwood_dog.jpg",
tags=["dog"], # max 5 tags per dataset object.
licenses=["MIT", "my-license"], # max 10 licenses per dataset object
annotations=[
{
"keypoints": [
{
"value": [
102.59,
23.04,
1
],
"key": "head"
}
],
"attributes": [
{
"type": "text",
"value": "Scottish field",
"key": "kind"
}
],
"confidenceScore": 0,
"rotation": 0,
"points": [
0
],
"value": "dog",
"type": "bbox" # type can be 'bbox', 'segmentation'.
}
],
custom_metadata={
"key": "value",
"metadata": "metadata-value"
}
)
If you would like to create a new dataset object with classification type annotations, please pass empty points and value of the annotation named 'classification'.
dataset_object = client.create_dataset_object(
dataset="YOUR_DATASET_NAME",
name="brushwood_dog.jpg",
file_path="./brushwood_dog.jpg",
tags=["dog"], # max 5 tags per dataset object.
licenses=["MIT", "my-license"], # max 10 licenses per dataset object
annotations=[
{
"type": "classification",
"value": "classification",
"points": [],
"attributes": [
{
"type": "text",
"value": "Scottish field",
"key": "kind"
}
]
}
]
)
See API docs for details.
{
'name': 'brushwood_dog.jpg',
'size': 6717,
'height': 225,
'width': 225,
'tags': [
'dog'
],
"annotations": [
{
"id": "YOUR_DATASET_OBJECT_ANNOTATION_ID",
"type": "bbox",
"title": "dog",
"value": "dog",
"points": [
0
],
"attributes": [
{
"value": "Scottish field",
"key": "kind",
"name": "Kind",
"type": "text"
}
],
"keypoints": [
{
"edges": [
"right_shoulder",
"left_shoulder"
],
"value": [
102.59,
23.04,
1
],
"key": "head",
"name": "頭"
}
],
"rotation": 0,
"color": "#FF0000",
"confidenceScore": -1
}
],
"customMetadata": {
"key": "value",
"metadata": "metadata-value"
},
'createdAt': '2022-10-30T08:32:20.748Z',
'updatedAt': '2022-10-30T08:32:20.748Z'
}
Find a single dataset object.
dataset_object = client.find_dataset_object(
dataset_id="YOUR_DATASET_ID",
object_name="brushwood_dog.jpg"
)
You can find a object of specified revision by version or revision_id.
dataset_object = client.find_dataset_object(
dataset_id="YOUR_DATASET_ID",
object_name="brushwood_dog.jpg",
version="YOUR_VERSION_NAME" # default is "latest"
)
dataset_object = client.find_dataset_object(
dataset_id="YOUR_DATASET_ID",
object_name="brushwood_dog.jpg",
revision_id="YOUR_REVISION_ID" # 8 characters or more
)
Success response is the same as when created.
Get all dataset object in the dataset. (Up to 1000 tasks)
dataset_objects = client.get_dataset_objects(dataset="YOUR_DATASET_NAME")
The success response is the same as when created, but it is an array.
You can filter by version or revision_id, licenses and tags.
dataset_objects = client.get_dataset_objects(
dataset="YOUR_DATASET_NAME",
version="latest", # default is "latest"
tags=["cat"],
licenses=["fastlabel"],
types=["train", "valid"], # choices are "train", "valid", "test" and "none" (Optional)
offset=0, # default is 0 (Optional)
limit=1000, # default is 1000, and must be less than 1000 (Optional)
)
dataset_objects = client.get_dataset_objects(
dataset="YOUR_DATASET_NAME",
revision_id="YOUR_REVISION_ID" # 8 characters or more
)
Download dataset objects in the dataset to specific directories.
You can filter by version, tags and types.
client.download_dataset_objects(
dataset="YOUR_DATASET_NAME",
path="YOUR_DOWNLOAD_PATH",
version="latest", # default is "latest"
tags=["cat"],
types=["train", "valid"], # choices are "train", "valid", "test" and "none" (Optional)
licenses=["fastlabel"],
offset=0, # default is 0 (Optional)
limit=1000, # default is 1000, and must be less than 1000 (Optional)
)
dataset_object = client.update_dataset_object(
dataset_id="YOUR_DATASET_ID",
object_name="brushwood_dog.jpg",
tags=["dog"], # max 5 tags per dataset object.
licenses=["MIT", "my-license"], # max 10 licenses per dataset object
annotations=[
{
"keypoints": [
{
"value": [
102.59,
23.04,
1
],
"key": "head"
}
],
"attributes": [
{
"value": "Scottish field",
"key": "kind"
}
],
"confidenceScore": 0,
"rotation": 0,
"points": [
0
],
"value": "dog",
"type": "bbox" # type can be 'bbox', 'segmentation'.
}
],
custom_metadata={
"key": "value",
"metadata": "metadata-value"
}
)
Delete a single dataset object.
client.delete_dataset_object(
dataset_id="YOUR_DATASET_ID",
object_name="brushwood_dog.jpg"
)
Support the following annotation types.
- bbox
- polygon
- pose estimation
Get tasks and export as a COCO format file.
project_slug = "YOUR_PROJECT_SLUG"
tasks = client.get_image_tasks(project=project_slug)
client.export_coco(project=project_slug, tasks=tasks)
Export with specifying output directory and file name.
client.export_coco(project="YOUR_PROJECT_SLUG", tasks=tasks, output_dir="YOUR_DIRECTROY", output_file_name="YOUR_FILE_NAME")
If you would like to export pose estimation type annotations, please pass annotations.
project_slug = "YOUR_PROJECT_SLUG"
tasks = client.get_image_tasks(project=project_slug)
annotations = client.get_annotations(project=project_slug)
client.export_coco(project=project_slug, tasks=tasks, annotations=annotations, output_dir="YOUR_DIRECTROY", output_file_name="YOUR_FILE_NAME")
Support the following annotation types.
- bbox
- polygon
- segmentation
Get tasks and export as YOLO format files.
project_slug = "YOUR_PROJECT_SLUG"
tasks = client.get_image_tasks(project=project_slug)
client.export_yolo(project=project_slug, tasks=tasks, output_dir="YOUR_DIRECTROY")
Get tasks and export as YOLO format files with classes.txt You can use fixed classes.txt and arrange order of each annotaiton file's order
project_slug = "YOUR_PROJECT_SLUG"
tasks = client.get_image_tasks(project=project_slug)
annotations = client.get_annotations(project=project_slug)
classes = list(map(lambda annotation: annotation["value"], annotations))
client.export_yolo(project=project_slug, tasks=tasks, classes=classes, output_dir="YOUR_DIRECTROY")
Support the following annotation types.
- bbox
- polygon
Get tasks and export as Pascal VOC format files.
project_slug = "YOUR_PROJECT_SLUG"
tasks = client.get_image_tasks(project=project_slug)
client.export_pascalvoc(project=project_slug, tasks=tasks)
Support the following annotation types.
- bbox
- polygon
- points
- line
Get tasks and export as labelme format files.
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG")
client.export_labelme(tasks)
Get tasks and export index color instance/semantic segmentation (PNG files). Only support the following annotation types.
- bbox
- polygon
- segmentation
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG")
client.export_instance_segmentation(tasks)
tasks = client.get_image_tasks(project="YOUR_PROJECT_SLUG")
client.export_semantic_segmentation(tasks)
Supported bbox , polygon or pose_estimation annotation type.
Convert annotation file of COCO format as a Fastlabel format and create task.
file_path: COCO annotation json file path
annotations_map = client.convert_coco_to_fastlabel(file_path="./sample.json", annotation_type="bbox")
# annotation_type = "bbox", "polygon" or "pose_estimation
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./sample.jpg",
annotations=annotations_map.get("sample.jpg")
)
Example of converting annotations to create multiple tasks.
In the case of the following tree structure.
dataset
├── annotation.json
├── sample1.jpg
└── sample2.jpg
Example source code.
import fastlabel
project = "YOUR_PROJECT_SLUG"
input_file_path = "./dataset/annotation.json"
input_dataset_path = "./dataset/"
annotations_map = client.convert_coco_to_fastlabel(file_path=input_file_path)
for image_file_path in glob.iglob(os.path.join(input_dataset_path, "**/**.jpg"), recursive=True):
time.sleep(1)
name = image_file_path.replace(os.path.join(*[input_dataset_path, ""]), "")
file_path = image_file_path
annotations = annotations_map.get(name) if annotations_map.get(name) is not None else []
task_id = client.create_image_task(
project=project,
name=name,
file_path=file_path,
annotations=annotations
)
Supported bbox and segmentation annotation type.
Convert annotation file of YOLO format as a Fastlabel format and create task.
classes_file_path: YOLO classes text file path dataset_folder_path: Folder path containing YOLO Images and annotation
annotations_map = client.convert_yolo_to_fastlabel(
classes_file_path="./classes.txt",
dataset_folder_path="./dataset/"
)
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./dataset/sample.jpg",
annotations=annotations_map.get("sample.jpg")
)
Example of converting annotations to create multiple tasks.
In the case of the following tree structure.
yolo
├── classes.txt
└── dataset
├── sample1.jpg
├── sample1.txt
├── sample2.jpg
└── sample2.txt
Example source code.
import fastlabel
project = "YOUR_PROJECT_SLUG"
input_file_path = "./classes.txt"
input_dataset_path = "./dataset/"
annotations_map = client.convert_yolo_to_fastlabel(
classes_file_path=input_file_path,
dataset_folder_path=input_dataset_path
)
for image_file_path in glob.iglob(os.path.join(input_dataset_path, "**/**.jpg"), recursive=True):
time.sleep(1)
name = image_file_path.replace(os.path.join(*[input_dataset_path, ""]), "")
file_path = image_file_path
annotations = annotations_map.get(name) if annotations_map.get(name) is not None else []
task_id = client.create_image_task(
project=project,
name=name,
file_path=file_path,
annotations=annotations
)
Supported bbox annotation type.
Convert annotation file of Pascal VOC format as a Fastlabel format and create task.
folder_path: Folder path including pascal VOC format annotation files
annotations_map = client.convert_pascalvoc_to_fastlabel(folder_path="./dataset/")
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./dataset/sample.jpg",
annotations=annotations_map.get("sample.jpg")
)
Example of converting annotations to create multiple tasks.
In the case of the following tree structure.
dataset
├── sample1.jpg
├── sample1.xml
├── sample2.jpg
└── sample2.xml
Example source code.
import fastlabel
project = "YOUR_PROJECT_SLUG"
input_dataset_path = "./dataset/"
annotations_map = client.convert_pascalvoc_to_fastlabel(folder_path=input_dataset_path)
for image_file_path in glob.iglob(os.path.join(input_dataset_path, "**/**.jpg"), recursive=True):
time.sleep(1)
name = image_file_path.replace(os.path.join(*[input_dataset_path, ""]), "")
file_path = image_file_path
annotations = annotations_map.get(name) if annotations_map.get(name) is not None else []
task_id = client.create_image_task(
project=project,
name=name,
file_path=file_path,
annotations=annotations
)
Support the following annotation types.
- bbox
- polygon
- points
- line
Convert annotation file of labelme format as a Fastlabel format and create task.
folder_path: Folder path including labelme format annotation files
annotations_map = client.convert_labelme_to_fastlabel(folder_path="./dataset/")
task_id = client.create_image_task(
project="YOUR_PROJECT_SLUG",
name="sample.jpg",
file_path="./sample.jpg",
annotations=annotations_map.get("sample.jpg")
)
Example of converting annotations to create multiple tasks.
In the case of the following tree structure.
dataset
├── sample1.jpg
├── sample1.json
├── sample2.jpg
└── sample2.json
Example source code.
import fastlabel
project = "YOUR_PROJECT_SLUG"
input_dataset_path = "./dataset/"
annotations_map = client.convert_labelme_to_fastlabel(folder_path=input_dataset_path)
for image_file_path in glob.iglob(os.path.join(input_dataset_path, "**/**.jpg"), recursive=True):
time.sleep(1)
name = image_file_path.replace(os.path.join(*[input_dataset_path, ""]), "")
file_path = image_file_path
annotations = annotations_map.get(name) if annotations_map.get(name) is not None else []
task_id = client.create_image_task(
project=project,
name=name,
file_path=file_path,
annotations=annotations
)
Please check const.COLOR_PALLETE for index colors.
Convert mask image to FastLabel's segmentation coordinate format.
points = client.mask_to_fastlabel_segmentation_points(
mask_image = binary_image_path (or binary_image_array)
)
Get training jobs.
def get_training_jobs() -> list[dict]:
all_training_jobs = []
offset = None
while True:
time.sleep(1)
training_jobs = client.get_training_jobs(offset=offset)
all_training_jobs.extend(training_jobs)
if len(training_jobs) > 0:
offset = len(all_training_jobs)
else:
break
return all_training_jobs
Find a single training job.
task = client.find_training_job(id="YOUR_TRAINING_ID")
Example of two training jobs.
[
{
"trainingJobId": "f40c5838-4c3a-482f-96b7-f77e16c96fed",
"status": "in_progress",
"baseModelName": "FastLabel Object Detection High Accuracy - 汎用",
"instanceType": "ml.p3.2xlarge",
"epoch": 300,
"projects": [
"image-bbox"
],
"statuses": [],
"tags": [],
"contentCount": 23,
"userName": "Admin",
"createdAt": "2023-10-31T07:10:28.306Z",
"completedAt": null,
"customModel": {
"modelId": "",
"modelName": "",
"modelURL": "",
"classes": []
}
},
{
"trainingJobId": "1d2bc86a-c7f1-40a5-8e85-48246cc3c8d2",
"status": "completed",
"baseModelName": "custom-object-detection-image",
"instanceType": "ml.p3.2xlarge",
"epoch": 300,
"projects": [
"image-bbox"
],
"statuses": [
"approved"
],
"tags": [
"trainval"
],
"contentCount": 20,
"userName": "Admin",
"createdAt": "2023-10-31T06:56:28.112Z",
"completedAt": "2023-10-31T07:08:26.000Z",
"customModel": {
"modelId": "a6728876-2eb7-49b5-9fd8-7dee1b8a81b3",
"modelName": "fastlabel_object_detection-2023-10-31-07-08-29",
"modelURL": "URL for download model file",
"classes": [
"person"
]
}
}
]
Get training jobs.
training_job = client.execute_training_job(
dataset_name="dataset_name",
base_model_name="fastlabel_object_detection_light", // "fastlabel_object_detection_light" or "fastlabel_object_detection_high_accuracy" or "fastlabel_u_net_general"
epoch=300,
use_dataset_train_val=True,
resize_option="fixed", // optional, "fixed" or "none"
resize_dimension=1024, // optional, 512 or 1024
annotation_value="person", // Annotation value is required if choose "fastlabel_keypoint_rcnn"
config_file_path="config.yaml", // optional, YAML file path for training config file.
)
Get evaluation jobs.
def get_evaluation_jobs() -> list[dict]:
all_evaluation_jobs = []
offset = None
while True:
time.sleep(1)
evaluation_jobs = client.get_evaluation_jobs(offset=offset)
all_evaluation_jobs.extend(evaluation_jobs)
if len(evaluation_jobs) > 0:
offset = len(all_evaluation_jobs)
else:
break
return all_evaluation_jobs
Find a single evaluation job.
evaluation_job = client.find_evaluation_job(id="YOUR_EVALUATION_ID")
Example of two evaluation jobs.
{
id: "50873ea1-e008-48db-a368-241ca88d6f67",
version: 59,
status: "in_progress",
modelType: "builtin",
modelName: "FastLabel Object Detection Light - 汎用",
customModelId: None,
iouThreshold: 0.8,
confidenceThreshold: 0.4,
contentCount: 0,
gtCount: 0,
predCount: 0,
mAP: 0,
recall: 0,
precision: 0,
f1: 0,
confusionMatrix: None,
duration: 0,
evaluationSource: "dataset",
projects: [],
statuses: [],
tags: [],
datasetId: "deacbe6d-406f-4086-bd87-80ffb1c1a393",
dataset: {
id: "deacbe6d-406f-4086-bd87-80ffb1c1a393",
workspaceId: "df201d3c-af00-423a-aa7f-827376fd96de",
name: "sample-dataset",
createdAt: "2023-12-20T10:44:12.198Z",
updatedAt: "2023-12-20T10:44:12.198Z",
},
datasetRevisionId: "2d26ab64-dfc0-482d-9211-ce8feb3d480b",
useDatasetTest: True,
userName: "",
completedAt: None,
createdAt: "2023-12-21T09:08:16.111Z",
updatedAt: "2023-12-21T09:08:18.414Z",
};
Execute evaluation jobs.
training_job = client.execute_evaluation_job(
dataset_name="DATASET_NAME",
model_name="fastlabel_object_detection_light",
// If you want to use the built-in model, select the following.
- "fastlabel_object_detection_light"
- "fastlabel_object_detection_high_accuracy"
- "fastlabel_fcn_resnet"
// If you want to use the custom model, please fill out model name.
use_dataset_test=True,
)
Get auto-annotation jobs.
def get_auto_annotation_jobs() -> list[dict]:
all_auto_annotation_jobs = []
offset = None
while True:
time.sleep(1)
auto_annotation_jobs = client.get_auto_annotation_jobs(project="YOUR_PROJECT_SLUG", offset=offset)
all_auto_annotation_jobs.extend(auto_annotation_jobs)
if len(auto_annotation_jobs) > 0:
offset = len(all_auto_annotation_jobs)
else:
break
return all_auto_annotation_jobs
Example of a single auto-annotation job.
[
{
'audioSeconds': 0,
'autoAnnotationType': 'image_bbox',
'completedAt': '2024-09-24T03:27:41.000Z',
'contentCount': 1000,
'createdAt': '2024-09-24T03:14:26.607Z',
'duration': 793,
'id': 'YOUR_AUTO_ANNOTATION_JOB_ID',
'modelName': 'Computer Vision - 汎用',
'msgCode': 'none',
'status': 'completed',
'taskAnnotationCount': 2598,
'updatedAt': '2024-09-24T03:27:40.914Z',
'userName': 'USER_NAME',
'version': 1
}
]
Execute auto-annotation job.
auto_annotation_job = client.execute_auto_annotation_job(
project="YOUR_PROJECT_SLUG",
model_name="Computer Vision - 汎用",
// If you want to use the built-in model, select the following.
// You can choose either Japanese or English name
- "Computer Vision - 汎用(General)"
- "Computer Vision - 顔(Face)"
- "Segment Anything - 汎用(General)"
- "Segment Anything 2 - 汎用(General)"
- "Segment Anything High Quality - 汎用(General)"
// Other built-in models require annotation class mapping.
// See: https://fastlabel.notion.site/cf3f006766d742d5ae25ca4200fa19b4
// If you want to use the custom model, please fill out model name.
algorithm_type: "object_detection", // optional, "object_detection", "ocr" or "image_classification"
update_existing: False, // optional, default: False
confidence_threshold: 0.4, // optional, default: 0.4
use_tta: False, // optional, default: False
use_flip: False, // optional, default: False
processing_speed: "low", // optional, default: "low", "low" or "medium" or "high"
auto_creation: True, // optional, default: True
)
Create the endpoint from the screen at first.
Currently, the feature to create endpoints is in alpha and is not available to users. If you would like to try it out, please contact a FastLabel representative.
import fastlabel
import numpy as np
import cv2
import base64
client = fastlabel.Client()
ENDPOINT_NAME = "YOUR ENDPOINT NAME"
IMAGE_FILE_PATH = "YOUR IMAGE FILE PATH"
RESULT_IMAGE_FILE_PATH = "YOUR RESULT IMAGE FILE PATH"
def base64_to_cv(img_str):
if "base64," in img_str:
img_str = img_str.split(",")[1]
img_raw = np.frombuffer(base64.b64decode(img_str), np.uint8)
img = cv2.imdecode(img_raw, cv2.IMREAD_UNCHANGED)
return img
if __name__ == '__main__':
# Execute endpoint
response = client.execute_endpoint(
endpoint_name=ENDPOINT_NAME, file_path=IMAGE_PATH)
# Show result
print(response["json"])
# Save result
img = base64_to_cv(response["file"])
cv2.imwrite(RESULT_IMAGE_FILE_PATH, img)
You can integrate the results of model endpoint calls, which are targeted for aggregation in model monitoring, from an external source.
from datetime import datetime
import pytz
import fastlabel
client = fastlabel.Client()
jst = pytz.timezone("Asia/Tokyo")
dt_jst = datetime(2023, 5, 8, 12, 10, 53, tzinfo=jst)
client.create_model_monitoring_request_results(
name="model-monitoring-name", # The name of your model monitoring name
results=[
{
"status": "success", # success or failed
"result": [
{
"value": "person", # The value of the inference class returned by your model
"confidenceScore": 0.92, # 0 ~ 1
}
],
"requestAt": dt_jst.isoformat(), # The time when your endpoint accepted the request
}
],
)
Check this for further information.