-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainutils.py
93 lines (78 loc) · 3.16 KB
/
trainutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from typing import Tuple
import numpy as np
import torch.optim
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm.auto import tqdm
device = "cuda" if torch.cuda.is_available() else "cpu"
def test(test_loader: DataLoader, model: nn.Module, criterion: nn.Module) -> Tuple[float, float]:
model.eval()
running_loss = 0.0
running_acc = 0.0
count = 0
for X, y in test_loader:
X, y = X.to(device), y.to(device)
count += len(y)
with torch.no_grad():
y_hat = model(X)
loss = criterion(y_hat, y)
preds = y_hat.argmax(1)
acc = torch.sum((preds == y).float())
running_loss += loss.item() * len(y)
running_acc += acc.item()
return running_loss / count, running_acc / count
def train(
train_loader: DataLoader,
valid_loader: DataLoader,
model: nn.Module,
criterion: nn.Module,
optimizer: torch.optim.Optimizer,
total_steps: int,
valid_steps: int,
trial_name: str,
) -> None:
writer = SummaryWriter(f"./logs/{trial_name}")
train_iterator = iter(train_loader)
best_accuracy = -1.0
model.train()
for step in tqdm(range(total_steps)):
try:
X, y = next(train_iterator)
except StopIteration:
train_iterator = iter(train_loader)
X, y = next(train_iterator)
X, y = X.to(device), y.to(device)
optimizer.zero_grad()
y_hat = model(X)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
preds = y_hat.argmax(1)
batch_loss = loss.item()
batch_acc = torch.mean((preds == y).float()).item()
writer.add_scalars("loss", {"train_loss": batch_loss}, global_step=step + 1)
writer.add_scalars("acc", {"train_acc": batch_acc}, global_step=step + 1)
if (step + 1) % valid_steps == 0:
valid_loss, valid_acc = test(valid_loader, model, criterion)
model.train()
writer.add_scalars("loss", {"valid_loss": valid_loss}, global_step=step + 1)
writer.add_scalars("acc", {"valid_acc": valid_acc}, global_step=step + 1)
print(f"{step + 1} steps - Train loss: {batch_loss} | Train acc: {batch_acc} | Valid loss: {valid_loss} | Valid acc: {valid_acc}")
if valid_acc > best_accuracy:
best_accuracy = valid_acc
best_state_dict = model.state_dict()
torch.save(best_state_dict, f"./models/{trial_name}.ckpt")
print("{} steps: Saving model with acc {:.3f}".format(step + 1, valid_acc))
def prediction(test_loader: DataLoader, model: nn.Module) -> None:
preds = np.array([], dtype=np.int32)
model.eval()
with torch.no_grad():
for features in tqdm(test_loader):
features = features.to(device)
outputs = model(features)
preds = np.concatenate((preds, outputs.argmax(1).cpu().numpy()), axis=0)
with open("prediction.csv", "w") as fp:
fp.write("Id,Class\n")
for i, y in enumerate(preds):
fp.write("{},{}\n".format(i, y))