-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTMI_tree.py
212 lines (182 loc) · 8.58 KB
/
TMI_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import codecs
import cPickle
import math
import re
import networkx as nx
from itertools import ifilter
from operator import itemgetter
from pattern.en import parsetree, wordnet
from pattern.search import taxonomy, search
from tmi import WordNetClassifier
taxonomy.classifiers.append(WordNetClassifier(wordnet))
# /////////////////////////////////////////////////////////////////////////////
# Interface classes on the TMI
# /////////////////////////////////////////////////////////////////////////////
def main_category_motif(motif):
"Return true if the motif is one of the general categories ABC...XYZ."
number, description = motif
return description.isupper() and number.isalpha()
class TMI(nx.DiGraph):
"""Thompson's Motif Index represented as a hierarchical
Dirrected Graph in networkx."""
def __init__(self, data=None, **attr):
nx.DiGraph.__init__(self, data=None, **attr)
self._subsumers = {} # memoizing dictionary
def subsumers(self, node, weight=None):
"Return the subsumers of a node."
if node in self._subsumers: return self._subsumers[node]
subsumers = nx.shortest_path_length(self, node, weight=weight)
self._subsumers[node] = subsumers
return subsumers
def parents(self, node):
"Return the parents of a node."
parents = self.subsumers(node)
subsumers = [parent for parent in sorted(parents, key=parents.__getitem__)]
subsumers.remove(node)
assert 'ROOT' in subsumers, (node, subsumers)
return subsumers
def parent(self, node):
return self.parents(node)[0]
def children(self, node):
"Return the parents of a node."
return set(self.predecessors(node))
def common_subsumers(self, a, b, weight='weight'):
"Return all common subsumers between two nodes a and b."
subsumers_a = self.subsumers(a, weight=weight)
subsumers_b = self.subsumers(b, weight=weight)
return {k: v for k, v in subsumers_a.iteritems() if k in subsumers_b}
def lowest_common_subsumer(self, a, b):
"Return the lowest common subsumer between two nodes."
return min(self.common_subsumers(a, b).iteritems(), key=itemgetter(1))
def distance_between(self, a, b):
"""Return the distance between a and b in terms of their
lowest common subsumer."""
return self.lowest_common_subsumer(a, b)[1]
def search(self, pattern):
for node, data in self.nodes(data=True):
if search(pattern, data['parse']):
yield node, data['data']
# /////////////////////////////////////////////////////////////////////////////
# Functions to compile the TMI into a Directed Graph
# /////////////////////////////////////////////////////////////////////////////
def split_index_entry(entry):
"Split entries in the TMI index (not motifs...)."
return re.split('\.(?=[^-])', entry.strip(), maxsplit=1)
def compile_index(index):
"""Function that provides the basic graph in which we will insert
the motifs from the TMI."""
headers, header, headerchange, history = [], None, False, []
G = TMI() # initialize a Directed Graph
for entry in index:
motif = (number, description) = split_index_entry(entry)
G.add_node(number, data=description, anchor=True)
if main_category_motif(motif):
# we found a new anchor point
header, headerchange = number, True
headers.append(number)
elif '-' in number: # motif declaring a range.
# collect the lower and upper bounds
lower, upper = [integer(m) for m in number.split('.-')]
if headerchange:
G.add_edge(header, number)
headerchange = False
history = []
else:
# there could be sub-anchors, check and apply
while history and upper > integer(history[-1].split('.-')[1]):
history.pop()
if history: # if there still is some history, it is a subanchor
G.add_edge(history[-1], number)
else:
G.add_edge(header, number)
history.append(number)
else:
while history and integer(number) > integer(history[-1].split('.-')[1]):
history.pop()
G.add_edge(history[-1], number)
G.add_node('ROOT', data='Unobserved ROOT node of the TMI')
# connect all header categories to an fictious root node.
for header in headers:
G.add_edge('ROOT', header)
return G
def integer(number):
if '.-' in number: number = number.split('.-')[0]
return int(number[1:])
def spell_out_nodes(node):
"Return all parent nodes of this motif."
elts = node.split('.')
if len(elts) == 1:
return elts
return ['.'.join(elts[:i]) for i in xrange(1, len(elts)) if elts[i-1] != '0']
def rounddown(node, i=100.0):
"Rounddown the motif number to the nearest 10th or 100th."
if i == 200:
return node[0] + str(integer(rounddown(node))-100)
return "%s%d" % (node[0], int(math.floor(integer(node) / float(i))) * i)
def find_closest_anchor(number, index):
candidates = [m for m,data in index.nodes(data=True) if 'anchor' in data
and not m.isalpha() and m[0] == number[0]
and integer(number) >= integer(m)
and integer(number) <= (integer(m.split('.-')[1]) if '.-' in m else integer(number))]
return min(candidates, key=lambda m: abs(integer(number) - integer(m)))
def add_motifs_to_index(motifs, index):
"Function to add the motifs from the TMI to the index."
for motif in motifs:
motif = (number, description) = motif.strip().split('\t')
print 'Adding: ', number
if number.endswith('.'): number = number[:-1]
# it could be we have already seen this motif in the index
# if so, continue to the next
if number in index: continue
index.add_node(number, data=description)
if len(number.split('.')) is 1: # non-terminal node
# try to match the motif to one of the motifs in the index
if rounddown(number, 10) != number and rounddown(number, 10) in index:
index.add_edge(rounddown(number, 10), number)
elif rounddown(number) != number and rounddown(number) in index:
anchor = find_closest_anchor(number, index)
if integer(anchor) > integer(rounddown(number)):
index.add_edge(anchor, number)
else:
assert rounddown(number) in index, number
index.add_edge(rounddown(number), number)
# if still no luck... This means trouble
else:
best = find_closest_anchor(number, index)
index.add_edge(best, number)
else:
parents = spell_out_nodes(number)
if parents[-1] not in index:
# there are a few inconsistencies in the TMI where terminal
# nodes do not have a direct parent. We add them to their next
# most direct parent.
if rounddown(parents[-1], 10) in index:
index.add_edge(rounddown(parents[-1], 10), number)
elif rounddown(parents[-1]) in index:
index.add_edge(rounddown(parents[-1]), number)
else:
raise ValueError('Could not resolve parent of %s' % motif)
else:
index.add_edge(parents[-1], number)
return index
def normalize_step_weight(graph):
"Changes the edge weights in the graph proportional to the longest path."
longest_path_len = max(nx.shortest_path_length(graph, 'ROOT').values())
# add normalized path length as weight to edges.
for category in 'ABCEDFGHJKLMNPQRSTUVWXZ':
# for each category, find out how long the longest path is.
cat_longest_path_len = max(nx.shortest_path_length(graph, category).values()) + 1
# normalize the stepsize
stepsize = float(longest_path_len) / cat_longest_path_len
# traverse tree for this category and assign stepsize to edges as weight attribute
for a,b in nx.dfs_edges(graph, category):
graph[a][b]['weight'] = stepsize
if __name__ == '__main__':
with codecs.open('tmi-index.txt', encoding='utf-8') as inf:
index = compile_index(inf)
with codecs.open('tmi-cleaned.txt', encoding='utf-8') as inf:
tmi = add_motifs_to_index(inf, index)
normalize_step_weight(tmi)
tmi.reverse(copy=False)
with open('tmi.cPickle', 'w') as out:
cPickle.dump(tmi, out, protocol=2)