forked from tylee-fdcl/Matrix-Fisher-Distribution
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpdf_MF_normal.m
76 lines (69 loc) · 2.18 KB
/
pdf_MF_normal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function c_return=pdf_MF_normal(s,bool_scaled)
%pdf_MF_normal: the normalizing constant for the matrix Fisher distribution
%on SO(3)
% c = pdf_MF_normal(s) is the normalizing constant for the
% matrix Fisher distribution on SO(3), for a given 3x1 (or 1x3) proper singular
% values s.
%
% c = pdf_MF_normal(s,BOOL_SCALED) returns an exponentially scaled value
% specified by BOOL_SCALED:
% 0 - (defalut) is the same as pdf_MF_normal(s)
% 1 - returnes an exponentially scaled normlaizing constant,
% exp(-sum(s))*c
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
%
% See also PDF_MF_NORMAL_APPROX
assert(or(min(size(s)==[1 3]),min(size(s)==[3 1])),'ERROR: s should be 3 by 1 or 1 by 3');
% if bool_scaled is not defined, then set it false
if nargin < 2
bool_scaled=false;
end
if ~bool_scaled
% return the normalizing constant without any scaling
c = integral(@(u) f_kunze_s(u,s),-1,1);
c_return = c;
else
% return the normalizing constant scaled by exp(-sum(s))
if s(1)>= s(2)
c_bar = integral(@(u) f_kunze_s_scaled_1(u,s),-1,1);
else
c_bar = integral(@(u) f_kunze_s_scaled_2(u,s),-1,1);
end
c_return = c_bar;
%c=c_bar*exp(sum(s));
end
end
function Y=f_kunze_s(u,s)
% integrand for the normalizing constant
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)))*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)));
Y(ii,jj)=1/2*exp(s(3)*u(ii,jj))*J;
end
end
end
function Y=f_kunze_s_scaled_1(u,s)
% integrand for the normalizing constant scaled by exp(-sum(s)) when s(1)
% >= s(2)
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*exp((s(2)+s(3))*(u(ii,jj)-1))*J;
end
end
end
function Y=f_kunze_s_scaled_2(u,s)
% integrand for the normalizing constant scaled by exp(-sum(s)) when s(1)
% <= s(2)
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*exp((s(1)+s(3))*(u(ii,jj)-1))*J;
end
end
end