-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
360 lines (284 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import copy, csv, os, pickle as pkl, sys
import networkx as nx
import numpy as np
import scipy.sparse as sparse
from scipy.sparse.linalg import eigs
DIR_NAME = os.path.dirname(os.path.realpath(__file__))
data = DIR_NAME + '/data'
def read_dataset(dataset, yang_splits=False):
if yang_splits:
return read_dataset_yang_splits(dataset)
print("reading " + dataset + " dataset")
if "pubmed" in dataset:
return read_p(dataset)
else:
return read_cc(dataset)
def read_cc(dataset):
folder = os.path.join(data, dataset)
content_file = os.path.join(folder, dataset + ".content")
cites_file = os.path.join(folder, dataset + ".cites")
features = []
neighbors = []
labels = []
keys = []
keys_to_idx = {}
classes = set()
with open(content_file) as content:
rows = csv.reader(content, delimiter="\t")
for r, row in enumerate(rows):
key, fs, label = row[0], row[1:-1], row[-1]
keys.append(key)
features.append(np.array(fs, dtype=np.float32))
labels.append(label)
neighbors.append([])
classes.add(label)
keys_to_idx[key] = r
valid_edges = 0
invalid_edges = 0
with open(cites_file) as cites:
rows = csv.reader(cites, delimiter="\t")
for row in rows:
if row[0] not in keys_to_idx or row[1] not in keys_to_idx:
invalid_edges += 1
continue
cited = keys_to_idx[row[0]]
citing = keys_to_idx[row[1]]
neighbors[citing].append(np.array([cited, 1]))
valid_edges += 1
print("valid edges:", valid_edges)
print("invalid edges:", invalid_edges)
features = np.array(features)
neighbors = np.array(neighbors)
classes = sorted(classes)
labels = int_enc(labels, classes)
o_h_labels = one_hot_enc(len(classes), labels)
return features, neighbors, labels, o_h_labels, keys
def int_enc(labels, classes):
int_labels = []
for l in range(len(labels)):
int_label = classes.index(labels[l])
int_labels.append(int_label)
return np.array(int_labels)
def read_p(dataset):
features = []
neighbors = []
labels = []
keys = []
keys_to_idx = {}
classes = set()
t_dict = {}
folder = os.path.join(data, dataset)
nodes = os.path.join(folder, 'data/Pubmed-Diabetes.NODE.paper.tab')
edges = os.path.join(folder, 'data/Pubmed-Diabetes.DIRECTED.cites.tab')
with open(nodes) as csvFile:
rows = list(csvFile)
indices = rows[1].replace('\n', '').replace('numeric:w-', '').replace(':0.0', '').split('\t')[1:]
keys_to_word_idx = {indices[i]: i for i in range(len(indices))}
rows = rows[2:]
for row in rows:
node_feature = np.zeros(500)
node = row.replace('\n', '').replace('w-', '').split('\t')
label = int(node[1].replace('label=', ''))
labels.append(label)
classes.add(label)
keys_to_idx[node[0]] = len(keys)
keys.append(node[0])
for i in range(2, len(node)-1):
k, v = node[i].split('=')
node_feature[keys_to_word_idx[k]] = v
features.append(node_feature)
neighbors = [[] for i in range(len(features))]
with open(edges) as csvFile:
rows = list(csvFile)[2:]
for row in rows:
node = row.replace('\n', '').replace('paper:', '').split('\t')
node.remove('|')
neighbors[keys_to_idx[node[1]]].append(np.array([keys_to_idx[node[2]], int(node[0])]))
labels = int_enc(labels, sorted(classes))
o_h_labels = one_hot_enc(n_classes=3, labels=labels)
return np.array(features, dtype=np.float32), np.array(neighbors), labels, o_h_labels, keys
def one_hot_enc(n_classes, labels):
o_h_labels = []
for l in range(len(labels)):
label = labels[l]
o_h_label = np.zeros(n_classes)
o_h_label[label] = 1
o_h_labels.append(o_h_label)
return np.array(o_h_labels).astype(np.int32)
def permute(features, neighbors, labels, o_h_labels, keys):
neighbors = copy.deepcopy(neighbors)
permutation = np.random.permutation(len(keys))
inv_permutation = np.argsort(permutation)
labels = labels[permutation]
o_h_labels = o_h_labels[permutation]
keys = [keys[p] for p in permutation]
features = features[permutation]
for n in neighbors:
for edge in n:
edge[0] = inv_permutation[edge[0]]
neighbors = [neighbors[p] for p in permutation]
return features, neighbors, labels, o_h_labels, keys
def normalize_features(features):
rowsum = np.array(features.sum(1))
rowsum[np.where(rowsum == 0)] = np.inf
normalized_features = features / np.broadcast_to(rowsum, features.T.shape).T
#normalized_features[np.isinf(normalized_features)] = 0
return normalized_features
def get_num_classes(dataset):
if dataset == "citeseer":
return 6
elif dataset == "cora":
return 7
elif dataset == "pubmed":
return 3
def split(dataset, labels):
n_classes = get_num_classes(dataset)
size = len(labels)
counters = np.zeros(n_classes)
train_size = 20*n_classes
mask_train = np.zeros(size, dtype=bool)
mask_val = np.zeros(size, dtype=bool)
t = v = i = 0
while t < train_size:
label = labels[i]
if counters[label] < 20: # 20 nodes per class in the training set
mask_train[i] = True
counters[label] += 1
t += 1
elif v < 500:
mask_val[i] = True
v += 1
i += 1
mask_val[np.arange(train_size + v, train_size+500)] = True
mask_test = np.zeros(size, dtype=bool)
mask_test[np.arange(size-1000, size)] = True
return mask_train, mask_val, mask_test
def adjacency_matrix(neighbors, weighted=False):
num_nodes = len(neighbors)
row_ind = []
col_ind = []
values = []
for n, adjacency_list in enumerate(neighbors):
for edge in adjacency_list:
neighbor = edge[0]
weight = edge[1] if weighted else 1
row_ind.append(n); col_ind.append(neighbor); values.append(weight)
row_ind.append(neighbor); col_ind.append(n); values.append(weight)
# the adjacency matrix must se symmetric
# TODO: symmetrize non-DAGs (i.e. treat the case of two edges between a pair of nodes)
return sparse.csr_matrix((values, (row_ind, col_ind)), shape=[num_nodes, num_nodes])
def degree_matrix(A):
D = np.diag(np.sum(A, axis=1))
return D
def semi_inverse_degree_matrix(A):
D_minus_half = sparse.diags( np.power(np.sum(A, axis=0), -1/2), [0], shape=A.shape )
return D_minus_half
def normalized_laplacian_matrix(A):
n = A.shape[0]
D_minus_half = semi_inverse_degree_matrix(A)
norm_L = sparse.identity(n) - D_minus_half.dot(A).dot(D_minus_half)
return norm_L
def scaled_normalized_laplacian_matrix(A):
n = A.shape[0]
norm_L = normalized_laplacian_matrix(A)
lambda_max = eigs(norm_L, k=1, which='LM', return_eigenvectors=True)[0] # Largest-Magnitude eigenvalue of norm_L
scaled_norm_L = float(2/lambda_max.real) * norm_L - sparse.identity(n)
return scaled_norm_L
def renormalization_matrix(A):
n = A.shape[0]
renorm_A = A + sparse.identity(n)
renorm_D_minus_half = semi_inverse_degree_matrix(renorm_A)
renormalized_matrix = renorm_D_minus_half.dot(A).dot(renorm_D_minus_half)
return renormalized_matrix
def parse_index_file(filename): # directly from GCN Github code
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sample_mask(idx, l): # directly from GCN Github code
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def read_dataset_yang_splits(dataset): # adapted from GCN Github code
print("reading " + dataset + " dataset with Yang splits")
data_folder = os.path.join(data, "yang_splits")
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open(os.path.join(data_folder, "ind.{}.{}".format(dataset, names[i])), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(os.path.join(data_folder, "ind.{}.test.index".format(dataset)))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sparse.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sparse.vstack((allx, tx)).astype(np.float32).toarray()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
o_h_labels = np.vstack((ally, ty)) # one-hot encoded
o_h_labels[test_idx_reorder, :] = o_h_labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
train_mask = sample_mask(idx_train, o_h_labels.shape[0])
val_mask = sample_mask(idx_val, o_h_labels.shape[0])
test_mask = sample_mask(idx_test, o_h_labels.shape[0])
return features, o_h_labels, adj, train_mask, val_mask, test_mask
def plot_tsne(data, labels, n_classes, model_name=None):
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
""" Input:
- model weights to fit into t-SNE
- labels (no one hot encode)
- num_classes
"""
n_components = 2
tsne = TSNE(n_components=n_components, init='pca', perplexity=40, random_state=0)
tsne_res = tsne.fit_transform(data)
v = pd.DataFrame(data,columns=[str(i) for i in range(data.shape[1])])
v['y'] = labels
v['label'] = v['y'].apply(lambda i: str(i))
v["t1"] = tsne_res[:,0]
v["t2"] = tsne_res[:,1]
sns.scatterplot(
x="t1", y="t2",
hue="y",
palette=sns.color_palette(["#52D1DC", "#8D0004", "#845218","#563EAA", "#E44658", "#63C100", "#FF7800"]),
legend=False,
data=v,
)
plt.xticks([])
plt.yticks([])
plt.xlabel('')
plt.ylabel('')
tsne_dir = os.path.join(DIR_NAME, "t-SNE")
if not os.path.exists(tsne_dir):
os.makedirs(tsne_dir)
plt.savefig(os.path.join(tsne_dir, model_name+'_t-SNE.png'))
# if __name__ == '__main__':
def main():
dataset = "pubmed"
#np.random.seed(0)
features, neighbors, labels, o_h_labels, keys = read_dataset(dataset)
features = normalize_features(features)
features, neighbors, labels, o_h_labels, keys = permute(features, neighbors, labels, o_h_labels, keys)
train_idx, val_idx, test_idx = split(dataset, labels)
A = adjacency_matrix(neighbors)
features, o_h_labels, adj, train_mask, val_mask, test_mask = read_dataset(dataset, yang_splits=True)
if __name__ == '__main__':
main()