-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_FashionMNIST.py
63 lines (53 loc) · 1.41 KB
/
dataset_FashionMNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import platform
channels = 1
image_size = 28
def normalize(img):
return (img * 2.) - 1.
def denormalize(img):
return (img + 1.) / 2.
training_data = datasets.FashionMNIST(
root=".data",
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(normalize)
])
)
test_data = datasets.FashionMNIST(
root=".data",
train=False,
download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(normalize)
])
)
def build_data(batch_size, train=True):
num_workers = 0 if platform.system() == 'Windows' else os.cpu_count()
print(f"dataloader num_workers: {num_workers}")
if train:
train_dataloader = DataLoader(
training_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
return train_dataloader
else:
test_dataloader = DataLoader(
test_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=True
)
return test_dataloader