forked from philipperemy/tensorflow-class-activation-mapping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
124 lines (102 loc) · 3.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import errno
import os
from glob import glob
import numpy as np
import skimage.io
import skimage.transform
import tensorflow as tf
from natsort import natsorted
from mnist import batch_size
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def new_conv_layer(bottom, filter_shape, name):
with tf.variable_scope(name) as scope:
w = tf.get_variable(
"W",
shape=filter_shape,
initializer=tf.random_normal_initializer(0., 0.01))
b = tf.get_variable(
"b",
shape=filter_shape[-1],
initializer=tf.constant_initializer(0.))
conv = tf.nn.conv2d(bottom, w, [1, 1, 1, 1], padding='SAME')
bias = tf.nn.bias_add(conv, b)
return bias
def read_dataset(percentage=1.0, cutoff=0.7):
labels = []
with open('data/labels.txt', 'r') as f:
lines = f.readlines()
for l in lines:
[_, label] = l.strip().split('\t')
labels.append(int(label))
labels = np.array(labels)
images = []
n = len(glob('/tmp/img/*.png'))
assert n == len(labels)
max_images = int(percentage * n)
labels = labels[:max_images]
print('found {} images.'.format(n))
for i in range(1, n + 1):
f = '/tmp/img/img_{}.png'.format(i)
images.append(load_image(f))
if i % 1000 == 0:
print('read {} images.'.format(i))
if len(images) == max_images:
break
images = np.array(images)
print(images.shape)
assert max_images == len(images)
assert max_images == len(labels)
separator = int(max_images * cutoff)
return [images[:separator], labels[:separator]], [images[separator:], labels[separator:]]
def load_image(path):
try:
img = skimage.io.imread(path).astype(float)
except:
return None
if img is None:
return None
if len(img.shape) < 2:
return None
if len(img.shape) == 4:
return None
if len(img.shape) == 2:
img = np.tile(img[:, :, None], 3)
if img.shape[2] == 4:
img = img[:, :, :3]
if img.shape[2] > 4:
return None
img /= 255.
return img
def next_batch(arr, arr2, index, slice_size, debug=False):
has_reset = False
index *= batch_size
updated_index = index % len(arr)
if updated_index + slice_size > len(arr):
updated_index = 0
has_reset = True
beg = updated_index
end = updated_index + slice_size
if debug:
print(beg, end)
return arr[beg:end], arr2[beg:end], has_reset
def restore(sess, saver):
checkpoints = natsorted(glob('checkpoints/mnist-cluttered*'), key=lambda y: y.lower())
start_i = 0
if len(checkpoints) > 0:
checkpoint = checkpoints[-2]
saver.restore(sess, checkpoint)
print('checkpoint restored =', checkpoint)
start_i = int(checkpoint.split('-')[-1]) + 1
return start_i
def save(sess, saver, i):
mkdir_p('checkpoints')
saver.save(sess, 'checkpoints/mnist-cluttered', global_step=i)
if __name__ == '__main__':
read_dataset(0.01)