-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathapp.py
83 lines (72 loc) · 2.78 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Flask Serving
This file is a sample flask app that can be used to test your model with an REST API.
This app does the following:
- Look for a Zvector(n_samples is encoded in this file) parameter
- Returns the output file generated at /output
Additional configuration:
- You can also choose the checkpoint file name to use as a request parameter
- Parameter name: ckp
- It is loaded from /model
GET req:
paramrter:
- ckp, optional, load a specific chekcpoint from /model
no parameter:
- generate 1 image from random noise
POST req:
parameter:
- file, required, a serialized Zvector file(the number of images to return is encoded in this vector)
- ckp, optional, load a specific chekcpoint from /model
"""
import os
import torch
from flask import Flask, send_file, request
from werkzeug.exceptions import BadRequest
from werkzeug.utils import secure_filename
from dcgan import DCGAN
ALLOWED_EXTENSIONS = set(['pth'])
MODEL_PATH = '/input'
print('Loading model from path: %s' % MODEL_PATH)
OUTPUT_PATH = "generated.png"
app = Flask(__name__)
# 2 possible parameters - checkpoint, zinput(file.cpth)
# Return an Image
@app.route('/', methods=['GET', 'POST'])
def geneator_handler():
print('start request!')
zvector = None
batchSize = 1
# Upload a serialized Zvector
if request.method == 'POST':
print('POST!')
# DO things
# check if the post request has the file part
if 'file' not in request.files:
return BadRequest("File not present in request")
file = request.files['file']
if file.filename == '':
return BadRequest("File name is not present in request")
if not allowed_file(file.filename):
return BadRequest("Invalid file type")
filename = secure_filename(file.filename)
# input_filepath = os.path.join('./', filename)
file.save(filename)
# Load a Z vector and Retrieve the N of samples to generate
zvector = torch.load(filename)
batchSize = zvector.size()[0]
checkpoint = request.form.get("ckp") or "netG_epoch_99.pth"
# Check for cuda availability
if torch.cuda.is_available():
# GPU and cuda
Generator = DCGAN(netG=os.path.join(MODEL_PATH, checkpoint), zvector=zvector, batchSize=batchSize, ngpu=1, cuda=True, outf="./")
else:
# CPU
Generator = DCGAN(netG=os.path.join(MODEL_PATH, checkpoint), zvector=zvector, batchSize=batchSize, ngpu=0, outf="./")
Generator.build_model()
Generator.generate()
return send_file(OUTPUT_PATH, mimetype='image/png')
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
if __name__ == "__main__":
app.run(host='0.0.0.0', threaded=False)