-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
199 lines (172 loc) · 7.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import print_function
import argparse
import os
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision.datasets import ImageFolder
from PIL import Image
import numpy as np
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--dataroot', default="/input/" ,help='path to dataset')
parser.add_argument('--evalf', default="/eval/" ,help='path to evaluate sample')
parser.add_argument('--outf', default='models',
help='folder to output images and model checkpoints')
parser.add_argument('--ckpf', default='',
help="path to model checkpoint file (to continue training)")
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--train', action='store_true',
help='training a ConvNet model on MNIST dataset')
parser.add_argument('--evaluate', action='store_true',
help='evaluate a [pre]trained model')
args = parser.parse_args()
# use CUDA?
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# Is there the outf?
try:
os.makedirs(args.outf)
except OSError:
pass
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
# From MNIST to Tensor
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# Load MNIST only if training
if args.train:
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root=args.dataroot, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root=args.dataroot, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
"""ConvNet -> Max_Pool -> RELU -> ConvNet -> Max_Pool -> RELU -> FC -> RELU -> FC -> SOFTMAX"""
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
# Load checkpoint
if args.ckpf != '':
if use_cuda:
model.load_state_dict(torch.load(args.ckpf))
else:
# Load GPU model on CPU
model.load_state_dict(torch.load(args.ckpf, map_location=lambda storage, loc: storage))
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(args, model, device, train_loader, optimizer, epoch):
"""Training"""
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
print('{{"metric": "Train - NLL Loss", "value": {}}}'.format(
loss.item()))
def test(args, model, device, test_loader, epoch):
"""Testing"""
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
print('{{"metric": "Eval - NLL Loss", "value": {}, "epoch": {}}}'.format(
test_loss, epoch))
print('{{"metric": "Eval - Accuracy", "value": {}, "epoch": {}}}'.format(
100. * correct / len(test_loader.dataset), epoch))
def test_image():
"""Take images from args.evalf, process to be MNIST compliant
and classify them with MNIST ConvNet model"""
def get_images_name(folder):
"""Create a generator to list images name at evaluation time"""
onlyfiles = [f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f))]
for f in onlyfiles:
yield f
def pil_loader(path):
"""Load images from /eval/ subfolder, convert to greyscale and resized it as squared"""
with open(path, 'rb') as f:
with Image.open(f) as img:
sqrWidth = np.ceil(np.sqrt(img.size[0]*img.size[1])).astype(int)
return img.convert('L').resize((sqrWidth, sqrWidth))
eval_loader = torch.utils.data.DataLoader(ImageFolder(root=args.evalf, transform=transforms.Compose([
transforms.Resize(28),
transforms.CenterCrop(28),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]), loader=pil_loader), batch_size=1, **kwargs)
# Name generator
names = get_images_name(os.path.join(args.evalf, "images"))
model.eval()
with torch.no_grad():
for data, target in eval_loader:
data, target = data.to(device), target.to(device)
output = model(data)
label = output.argmax(dim=1, keepdim=True).item()
print ("Images: " + next(names) + ", Classified as: " + str(label))
# Train?
if args.train:
# Train + Test per epoch
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, epoch)
# Do checkpointing - Is saved in outf
torch.save(model.state_dict(), '%s/mnist_convnet_model_epoch_%d.pth' % (args.outf, args.epochs))
# Evaluate?
if args.evaluate:
test_image()