-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathconfig.py
41 lines (32 loc) · 1.12 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # sets device for model and PyTorch tensors
im_size = 320
unknown_code = 128
epsilon = 1e-6
epsilon_sqr = epsilon ** 2
num_classes = 256
num_samples = 43100
num_train = 34480
# num_samples - num_train_samples
num_valid = 8620
# Training parameters
num_workers = 8 # for data-loading; right now, only 1 works with h5py
grad_clip = 5. # clip gradients at an absolute value of
print_freq = 100 # print training/validation stats every __ batches
checkpoint = None # path to checkpoint, None if none
##############################################################
# Set your paths here
# path to provided foreground images
fg_path = 'data/fg/'
# path to provided alpha mattes
a_path = 'data/mask/'
# Path to background images (MSCOCO)
bg_path = 'data/bg/'
# Path to folder where you want the composited images to go
out_path = 'data/merged/'
max_size = 1600
fg_path_test = 'data/fg_test/'
a_path_test = 'data/mask_test/'
bg_path_test = 'data/bg_test/'
out_path_test = 'data/merged_test/'
##############################################################